
Predictive Autonomous Robot Navigation

Amalia F. Foka and Panos E. Trahanias

Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece
and Department of Computer Science, University of Crete, Heraklion, Greece, {foka,trahania}@ics.forth.gr

Abstract

This paper considers the problem of a robot navi-
gating in a crowded or congested environment. A
robot operating in such an environment can get eas-
ily blocked by moving humans and other objects. To
deal with this problem it is proposed to attempt to pre-
dict the motion trajectory of humans and obstacles.
Two kinds of prediction are considered: short-term
and long-term. The short-term prediction refers to
the one-step ahead prediction and the long-term to
the prediction of the final destination point of the
obstacle’s movement. The robot movement is con-
trolled by a Partially Observable Markov Decision
Process (POMDP). POMDPs are utilized because of
their ability to model information about the robot’s
location and sensory information in a probabilistic
manner. The solution of a POMDP is computation-
ally expensive and thus a hierarchical representation
of POMDPs is used.

1 Introduction

For mobile robots, navigation in dynamic, real-world
environments is a complex and challenging task.
Such environments are characterized by their com-
plex structure and the movement of humans and ob-
jects in them. In such cases, a navigating robot can
easily get blocked by moving humans and obstacles
and may become immobilized and not able to con-
tinue its movement towards its goal position until
the moving objects free its way. To avoid ever get-
ting in such a situation, many researchers have tried
to predict the motion of humans and obstacles. Fu-
ture motion prediction allows the robot to estimate
if the way it follows is going to be blocked and thus
change direction before it ever faces this situation.
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Future motion prediction is an intrinsic behavior of
humans. Consider the example of a man trying to
cross a street. The man tries to estimate how long
it will take for a vehicle to reach the point that he
stands and then decides if he should cross the street.

Generally speaking, a robot has to make decisions
about the actions it should perform at each time step
considering the information its sensors provide about
the environment state. Thus, the robot has to solve
a sequential decision problem.

The solution of a sequential decision problem in a
completely observable environment, where the robot
always knows its state, is called a Markov Decision
Process (MDP). When there is uncertainty or not
enough information to determine the state of the
robot, the problem is called a Partially Observable
Markov Decision Process (POMDP).

In this paper it is proposed to integrate the future
motion prediction of humans or obstacles into the
sequential decision problem of navigation modelled
by a POMDP. Previous work that made use of fu-
ture motion prediction has been only used in local
collision avoidance modules [7, 5, 2, 9, 6]. In this
paper, we make use of the prediction information in
the global navigation model. Moreover, the POMDP
model is used to formulate the navigation task be-
cause it provides a probabilistic way of represent-
ing information and also solves the localization prob-
lem. POMDPs have been previously used in robotics
but only in either simple environments [1, 3] and as
a high-level mission planner with a separate mod-
ule for collision avoidance [8]. This approach pro-
poses the use of a POMDP model that integrates
the localization and collision avoidance with the use
of future motion prediction modules for autonomous
robot navigation.

The rest of this paper is organized as follows. In sec-
tion 2, the modelling of the predictive robot naviga-
tion problem is given. In sections 3 and 4, the short-
term and long-term prediction is described and in
section 5 the integration of prediction into the global
model is illustrated. Experimental results are given
in section 6 and the paper concludes in section 7.



2 Partially Observable Markov Decision
Processes (POMDPs)

POMDPs are a model of an agent interacting syn-
chronously with its environment. The agent takes as
input the state of the environment and generates as
output actions, which themselves affect the state of
the environment.

A POMDP is a tuple M =〈S,A, T ,R,Z,O〉, where
[4]:

• S, is a finite set of states of the environment
that are not observable.

• A, is a finite set of actions.

• T : S ×A → Π(S) is the state transition func-
tion, giving for each state and agent action, a
probability distribution over states. T (s, a, s′)
is the probability of ending in state s′, given
that the agent starts in state s and takes action
a, p(s′|s, a).

• Z, is a finite set of observations

• O : A× S → Π(Z) is the observation function
giving for each state and agent action, a proba-
bility distribution over observations. O(s′, a, z)
is the probability of observing z, in state s′ after
taking action a, p(z|s′, a).

• an initial belief state, p0(s : s ∈ S), a discrete
probability distribution over the set of environ-
ment states, S, representing for each state the
agent’s belief that is currently occupying that
state.

• R : S ×A → R is the reward function, giv-
ing the expected immediate reward gained by
the agent for taking each action in each state,
R(s, a).

2.1 Problem Formulation and Hierarchical
POMDPs

The tuple M =〈S,A, T ,R,Z,O〉, of the POMDP is
instantiated in our formulation as:

• S, each state in S corresponds to a discrete
square area of the environment’s occupancy grid
map (OGM).

• A, consists of the basic motion actions: North,
South, North-West, South-West, West, North-
East, South-East and East.

• T is defined by setting the probability T (s, a, s′)
to 0.9, when s′ is the correct resulting state given
action a and previous state s. The probability

of 0.04 is assigned when the resulting state is an
immediate neighbor of s′, and the probability of
0.01 is assigned to any other neighboring state
of s′. Zero probability is assigned to all other
states. Figure 1, illustrates the transition prob-
abilities assigned for a state s, given that the
action is North. The correct resulting state is
s′. The assignment of transition probabilities for
other actions is performed in a similar manner.

Figure 1: Assignment of transition probabilities.

• Z and O, are the elements of the POMDP that
assist in the localization of the robot, that is the
determination of the belief state after an action
has been taken, i.e. the probability of all states
that the robot occupies them. In this work we
employ a simulated environment, and hence the
state which the robot occupies is always known
with certainty. Therefore, these two elements
are not crucial in our current implementation.
Z and O are defined though to be able to solve
the POMDP. Thus, Z consists of two observa-
tions: goal position and “nothing”. O(s′, a, z),
is defined by assigning the value of 1 if after tak-
ing action a the resulting state is the goal state.
Otherwise, it is assigned the zero value.

• The initial belief state, p0(s : s ∈ S), is defined
by assigning the probability 0.9 to the state that
corresponds to the robot’s start position. Neigh-
boring states are assigned probabilities that sum
up to 0.1. Zero probability is assigned to all
other states.

• R, is the element of the POMDP that this work
gives most emphasis. The reward function is
the element of the POMDP that will actually
control the movement of the robot and allows
the POMDP to be used for global planning in-
stead as a high-level mission planner as in pre-
vious approaches [1, 3, 8]. It will ensure that
the robot avoids moving obstacles, humans and
other robots and also moves predictively accord-
ing to the independent motion of other objects.
The determination of the reward function is dis-
cussed in detail in section 5.



Hierarchical POMDPs. Much of the criticism
for the use of POMDPs is that they are computa-
tionally inefficient when there is a large state space
involved. This is the main reason that POMDPs
have been utilized until now only as high-level mis-
sion planners. Implementations so far for robot
navigation with POMDPs used coarse discretiza-
tion of the OGM to maintain the state space small
[1]. Such implementations used typically one-square-
meter discretization, and it is desirable to use a much
finer discretization without large computational cost.
For this reason, a hierarchical representation of the
POMDP model is used in this work.

Our approach to hierarchy is to decompose a
POMDP with large state space into multiple
POMDPs with significantly smaller state space. The
hierarchical POMDP has a tree structure, where go-
ing from the top level to the bottom, the resolu-
tion changes from coarser to finer and the number of
POMDPs is increased. At the top level there is a sin-
gle POMDP with coarse resolution. At the next level
each state of the POMDP at the top level is divided
into four states and a new POMDP is constructed
having as state space these four states. Thus, each
state in the top level corresponds to a POMDP in
the next level. In the same manner, lower levels
are constructed until we have reached the level that
its states are the states of the original flat POMDP.
Figure 2 illustrates the basic concept of hierarchical
POMDPs. In this figure, it is shown how a state
at the top level is decomposed to multiple states in
subsequent levels.

Figure 2: The decomposition of states in the hier-
archical POMDP.

Planning with Hierarchical POMDPs. The
solution of a POMDP is a policy, i.e. a map-
ping from each “belief state” (probability distribu-
tion over states) to actions that maximize the long-
term sum of reward the robot receives. Initially, the
POMDP is solved at the top level. The solution of
the top level POMDP gives intuitively the general
route the robot should follow to reach the goal. Fol-
lowing, the POMDP at the lower level that contains
the robot’s current state is solved with its goal be-
ing to follow the direction that the solution of the

upper-level POMDP provided. In the same manner,
POMDPs at all levels are solved until the bottom
level is reached. The action obtained from the solu-
tion of the bottom level POMDP is the one that the
robot will actually perform.

3 Short-Term Prediction

The short-term prediction of the future motion, i.e.
the one-step ahead prediction, is obtained by a Poly-
nomial Neural Network (PNN). In PNNs each node’s
transfer function is a polynomial. PNN’s can model
any function since the Kolmogorov-Gabor theorem
states that any function can be represented as a
polynomial of the form f(x) = a0 +
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∑
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xi is the independent variable in the input variable
vector ~x and ~a is the coefficient vector. PNNs ap-
proximate the Kolmogorov-Gabor polynomial repre-
sentation of a function by having as a transfer func-
tion at each node, a second order polynomial of the
form f(x) = a+bx1 +cx2 +dx2

1
+ex2

2
+fx1x2, where

x1 and x2 are the inputs to the node. The input to
the network, x1 and x2, is the moving obstacle’s posi-
tion at times t−1 and t. The positions of the moving
obstacle are given to the network as a state. The out-
put of the network is the predicted position at time
t + 1. The topology and weights, that is the poly-
nomial coefficients, of the PNN are determined via
training with an evolutionary method. The training
set used was composed of 4500 samples and is shown
in Figure 3. It was obtained by arbitrary movement
in the environment that the robot operates. The re-

Figure 3: The data set used for NN training.

sults obtained from the trained NN are illustrated
in Figure 4. The first 3000 samples from the data
set were used for training and the rest 1500 samples
for evaluating the network. It can be seen that the
network gives a prediction with a small error for the
first 3000 samples but as well for the rest of the sam-
ples that the network has not seen before. Therefore,
the network obtained generalizes well for unforeseen
situations.



Figure 4: The results obtained from the trained NN.

4 Long-Term Prediction

Prediction methods known so far give satisfactory
results for one-step ahead prediction. For the robot
navigation task it would be more useful to have
many-steps ahead prediction. This would give the
robot sufficient time and space to perform the neces-
sary manoeuvres to avoid obstacles and more impor-
tantly change its route towards its destination posi-
tion. It is desirable for the robot to develop a behav-
ior that will prefer routes that are not crowded and
thus avoid ever getting stuck.

It is unlikely that any available prediction method
would give satisfactory results for many-steps ahead
prediction, given the complexity of the movement
behavior. To achieve this kind of behavior, it is pro-
posed to employ a long-term prediction mechanism.
The long-term prediction refers to the prediction of
a human’s or an obstacle’s final destination position.
It is plausible to assume that humans mostly do not
just move around but with the intention of reach-
ing a specific location. Our approach for performing
long-term prediction is based on the definition of the
so-called “hot” points (points of interest) in the envi-
ronment, where people would have interest in visiting
them. For example, in an office environment desks,
doors and chairs are objects that people have interest
in reaching them and could be defined as points of in-
terest. In a museum, the points of interest can be de-
fined as the various exhibits that are present. More-
over, other features of the environment such as the
entry points, passages, e.t.c, can be defined as points
of interest. Evidently, points of interest convey se-
mantic information about a workspace and hence
can only be defined with respect to the particular
environment. In this work, such points are defined
manually on the internal representation (map) of the
environment. Appropriate semi-automated methods
for their definition can also be considered, an issue
beyond the scope of this paper.

Once the points of interest of an environment are
defined, then the long-term prediction refers to the
prediction of which “hot” point a moving obstacle is

going to approach. At each time step t, the tangent
vector of the obstacle’s positions at times t−1, t and
the predicted position at time t + 1 is taken. This
tangent vector essentially determines the global di-
rection of the obstacle’s motion trajectory, termed as
Global Direction of Obstacle (GDO). This direction
is employed to determine which “hot” point a moving
obstacle is going to approach. A “hot” point is prob-
able to be the obstacle’s final destination point if it
lies roughly in the direction of the evaluated tangent
vector. In order to find such “hot” points, we estab-
lish a field-of-view, that is an angular area centered at
the GDO. “Hot” points present in the field-of-view
are possible points to be reached, with a probabil-
ity wi, according to a probability model. The latter
is defined as a gaussian probability distribution with
center at the GDO and standard deviation in propor-
tion to the angular extent of the field-of-view. Thus,
points of interest present in the center of the field-of-
view are assigned a high probability, and points of
interest present in the periphery of the field-of-view
are assigned a lower probability. With this approach,
at the beginning of the obstacle’s movement a mul-
tiple number of points of interest will be present in
its field-of-view but as it continues its movement the
number of such points is decreased and finally it usu-
ally converges to a single point of interest.

5 Integration of Prediction in the Global
Model

The short-term and long-term prediction are inte-
grated in the global model by including them in the
reward function of the POMDP. Each square area
in the OGM is characterized by an associated value.
This value is the reward the robot receives for ending
up in this state. Thus, it would be desirable that this
value gives a description of the state of this square
area in the environment as

• how far it is from the goal position,

• whether it is occupied by a static obstacle,

• whether it is occupied by a moving obstacle, i.e.
human or other robot,

• whether it will be occupied and how soon by a
moving obstacle.

To save computation time, two types of OGMs are
used: a static and a dynamic grid map. The static
OGM is evaluated once and includes the first two
sources of information concerning the goal position
and static obstacles.

Information provided from the short-term and long-
term prediction modules is included in the dynamic



OGM. The inclusion of the short-term prediction is
trivial and it involves zeroing the reward associated
with the grid cell that is the predicted next-time po-
sition of the obstacle.

The long-term prediction refers to the prediction of
the destination position of the obstacle’s movement.
Thus, the reward value of the grid cells that are in
the trajectory from the obstacle’s current position
and its predicted destination position is discounted.
Hence, the value of a cell, p, in the dynamic grid map,
DGM , is given by a function DGM(p) = wi·extentγ ,

where wi is the probability that the predicted des-
tination point will be reached, extent is a constant
that controls how far the robot should stay from ob-
stacles and γ is the factor that determines how much
the value of extent should be discounted. The value
of γ depends on the estimate of how far in the future
this cell will be occupied. For example, if a cell p is
to be occupied shortly in the future, γ will be close
to 0, and thus the reward assigned to cell p will be
small. On the other hand, if cell p is to be occupied
far in the future, γ will be close to 1 and thus the
reward assigned to this cell will not be significantly
discounted. The dynamic grid map is updated con-
tinuously and is added with the static grid map to
obtain the final reward function.

6 Results

In the experiments performed, it is assumed that the
moving obstacles and the robot move with the same
constant velocity. This is a simplifying assumption
for the implementation of our simulated environment
that does not affect at all the general applicability of
our approach.

A POMDP is utilized to model the world that the
robot operates and make a decision at each time step,
in a global and probabilistic manner, regarding the
action it should perform. The static OGM of the re-
ward function of the POMDP, is defined by the Eu-
clidean distance of the resulting state from the goal
position. The reward function is updated at each
time step according to the short-term and long-term
prediction of the obstacle’s movement, as described
in the previous section.

Because the POMDP reward function is updated at
each time step and the POMDP is solved at each
time step, the need for a fast and efficient solution
method arises. This has been accomplished via the
hierarchical implementation described previously. In
our experiments a (single-level) POMDP with 3776
states, 8 actions and 2 observations was solved with
the MLS heuristic in more than 8 hours. The same
POMDP when transformed to a hierarchical, was
solved in less than 4.5 sec (CPU time). The time re-

quired to solve a POMDP is crucial in our approach,
since the environment is dynamic and the POMDP
has to be solved at each time step.

In the example figures shown, points marked with
“H” are the “hot” points defined in the environment.
Points marked with Rs and Rg are the robot’s start
point and goal point, respectively. Finally, points
marked with Ois and Oie, are the i-th obstacle’s
start and end point, respectively.

In the example shown in Figures 5 and 6, the robot
can reach its goal position by either going above the
static obstacle A or below it. A path planner that
uses local obstacle avoidance, would choose to fol-
low the North-East (NE) direction (because the Eu-
clidean distance metric was used for the reward the
robot receives). This motion trajectory reaches the
goal position by going above the object A. At the
time that the robot reaches the passage above the
static obstacle though, the moving obstacles will be
in the same region resulting to the need of the robot
making manoeuvres to avoid them. This might re-
sult in the robot going back and forth in order to
avoid the moving obstacles.

Figure 5: Example 1 (t = 3).

Our planner that makes use of the moving obstacle’s
future motion prediction follows a completely differ-
ent path. The robot starts its motion in the optimal
NE direction. At the time where it has the predic-
tion that a moving obstacle will cross the passage
above the static obstacle and the passage below the
static obstacle is free (shown in Figure 5) it chooses
to go from the passage that is free from obstacles.
The chosen path, ensures that the robot will not get
close to obstacles and thus never need to make any
manoeuvres to avoid them, as it can be seen in Fig-
ure 6.

In our second example, shown in Figures 7 and 8, the
robot can reach its goal position again by either go-
ing above the static obstacle or below. The shortest
path is to go below the static obstacle. A path plan-
ner with a local obstacle avoidance module would



Figure 6: Example 1 (t = 64).

choose this optimal action. At the point the robot
would enter this passage, both obstacles would also
be moving in the same region. This would result for
the robot to get stuck for a period of time in this
passage because it would make manoeuvres to avoid
the obstacles. Our path planner, chooses to reach
the goal position by going above the static obstacle.
This path is chosen because there is the prediction
for both obstacles that will go through the passage
below the static obstacle. The chosen path results to
a robot motion trajectory that is not obstructed by
any obstacle.

Figure 7: Example 2 (t = 9).

Figure 8: Example 2 (t = 69).

The previous examples demonstrate the intuition of

our approach. That is, the robot from the beginning
of its motion considers the prediction made about the
future position of the obstacles. Therefore, it chooses
to move towards the goal position by performing sub-
optimal local actions, that will eventually lead to a
global optimal path.

7 Conclusions

In this paper it is proposed to use prediction tech-
niques within a probabilistic framework for au-
tonomous robot navigation in highly dynamic envi-
ronments. The prediction of the future motion of ob-
stacles and humans is integrated in the global nav-
igation model. Future work involves applying this
approach to real world environments. In addition,
the prediction of the velocity of moving obstacles
will be attempted on top of future motion predic-
tion. Controlling the robot’s velocity based on mov-
ing obstacle’s future motion and velocity prediction
will also be considered. Finally, the hierarchical rep-
resentation of POMPDs will be further investigated
to further reduce the computation time required.
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