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Abstract— This paper introduces a methodology for avoid-
ing obstacles by controlling the robot’s velocity. Contem-
porary approaches to obstacle avoidance usually dictate a
detour from the originally planned trajectory to its goal
position. In our previous work, we presented a method for
predicting the motion of obstacles, and how to make use
of this prediction when planning the robot trajectory to its
goal position. This is extended in the current paper by also
using this prediction to decide if the robot should change its
speed to avoid an obstacle more effectively. The robot can
choose to move at three different speeds:slow, normal and
fast. The robot movement is controlled by a Hierarchical
Partially Observable Markov Decision Process (POMDP).
The POMDP formulation is not altered to accommodate for
the three different speeds, to avoid the increase of the size
of the state space. Instead, a modified solution of POMDPs
is used.

I. INTRODUCTION

Navigation in dynamic, real-world environments is a
complex and challenging task. Such environments are
characterized by their complex structure and the move-
ment of humans and objects in them. The robot has to
avoid collision with obstacles and also reach its goal
position in a fast and optimal manner. Obstacle avoidance
is currently treated by methods that fall into two broad cat-
egories:global and local (or reactive). Global approaches
(an overview of these methods can be found in [5]),
have the advantage that they avoid obstacles with globally
optimal paths but they cannot effectively deal with cases
where unforseen changes in the obstacle movement occur.
On the other hand, local obstacle avoidance methods
[4], [1], [9], [3] can deal with unforseen changes in the
environment but they treat the problem locally and in a
suboptimal manner.

In our previous work [2], the obstacle avoidance prob-
lem was treated by making prediction of the obstacle’s
movement. Two kinds of prediction have been utilized:
short-termandlong-term. The short-term prediction refers
to the one-step ahead prediction and the long-term to
the prediction of the final destination point of the ob-
stacle’s movement. Both predictions are integrated into

the POMDP model that is used to control the robot’s
movement. A hierarchical representation of POMPDs is
used that enables us to solve the POMDP on-line at each
time step. This approach, has the advantage that it is able
to avoid obstacles in a globally optimal manner and also
is able to deal effectively with unforeseen changes in the
obstacle movement.

In this paper, our previous work is extended to allow the
robot to decide if it should increase or decrease its speed
to avoid an obstacle more effectively. Without control
of its speed, the robot has to make detours or follow a
suboptimal path to reach its goal in order to avoid collision
with obstacles. In many cases, the robot can avoid making
these suboptimal actions if it can either increase its speed
to bypass the obstacle or decrease its speed to let the
obstacle move away from the robot.

In the formulation of the problem with POMDPs we
choose not to include the speed of the robot as a char-
acteristic of its state, as with its location and orientation,
or include speed actions in the action set. Such a choice
would further increase the state space and make the
memory requirements of the model impossible to manage.
Instead, the solution of the POMDP is modified to account
for the speed decision that the robot has to make.

The rest of this paper is organized as follows. In Section
2, the modelling of the problem is given. In Section 3, our
methodology for controlling the robot’s speed is explained.
Experimental results are given in Section 4. Finally, in
Section 5 a short discussion of the results of our approach
concludes the paper.

II. PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES (POMDPS) AND

PROBLEM FORMULATION

POMDPs are a model of an agent interacting syn-
chronously with its environment. The agent takes as input
the state of the environment and generates as output
actions, which themselves affect the state of the environ-
ment.
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A POMDP is a tupleM =〈S,A, T ,R,Z,O〉 [6], that
in our problem formulation is instantiated as:

• S, is a finite set of states of the environment that
are not observable. Each state inS corresponds to
a discrete entry cell in the environment’s occupancy
grid map (OGM) and an orientation of the robot.

• A, is a finite set of actions and consists of all possible
rotation actions from0o to 360o. The discretization of
the action set depends on the actual levels of POMDP
hierarchy (see later Section 2.1).

• T : S ×A → Π(S) is the state transition function.
T (s, a, s′) is the probability of ending up in states′,
given that the agent starts in states and takes action
a, p(s′|s, a). T is defined according to the motion
model of the robot.

• Z, is a finite set of observations. The set of observa-
tions is instantiated as the output of theiterative dual
correspondence(IDC) [7] algorithm for scan match-
ing. At each time step, an observation is obtained by
feeding the IDC with the current scan of the robot
and a reference scan of the environment in which the
robot operates. The IDC also requires an estimate of
the robot’s position from which the current scan was
obtained, which is given as the robot’s position before
it performed the action. This position is taken to be
the most likely state of the robot’s belief state. It is
reasonable to assume that the robot cannot move too
far from its previous state at one time step. Therefore,
the output of the IDC algorithm, that is thedx, dy
anddθ from the estimated location provided, will be
within certain limits. The output of the IDC algorithm
is discretized and thus the set of observations remains
manageable.

• O : A× S → Π(Z) is the observation function.
O(s′, a, z) is the probability of observingz, in state
s′ after taking actiona, p(z|s′, a). O, is again ob-
tained according to the motion model of the robot.

• bt, is the belief the robot has at timet, that is
a discrete probability distribution over the set of
environment states,S. Hence,bt(s) is the probability
of the robot being in states at time t, pt(s : s ∈ S).

• R : S ×A → R is the reward function, giving the
expected immediate reward gained by the agent for
taking each action in each state,R(s, a). R, is built
according to two occupancy grid maps (OGM): a
staticand adynamic. The static OGM is built by cal-
culating the distance of each cell to the goal position.
The dynamic OGM is evaluated at each time step
according to the short-term and long-term predic-
tion. Long-term prediction refers to the prediction of
the destination position of the obstacle’s movement.
Thus, the reward value of the grid cells that are in
the trajectory from the obstacle’s current position and
its predicted destination position is discounted. The

Fig. 1. The decomposition of states in the hierarchical POMDP.

discount of a cell’s reward value depends on the
estimate of how far in the future this cell will be
occupied.

A. Hierarchical POMDPs

Hierarchical POMDPs have been recently studied and
two approaches have been proposed: state space hierarchy
[10] and action space hierarchy [8]. Our approach to
hierarchical POMDP formulation generalizes the above
two approaches applying both state space and action space
hierarchy. It decomposes a POMDP with large state and
action space into multiple POMDPs with significantly
smaller state and action space. The hierarchical POMDP
has a tree structure, where going from the top level to
the bottom, the resolution changes from coarser to finer
and the number of POMDPs is increased. At the top level
there is a single POMDP with coarse resolution and the
basic four orientation angles (North, South, East, West).
Subsequent levels are built by decomposing each state of
every POMDP at a level to a new POMDP at the next
level. At the bottom level, the states of every POMDP
correspond to the states of the original flat POMDP. Fig.
1, illustrates the basic concept of hierarchical POMDPs.
In this figure, it is shown how a state at the top level is
decomposed to multiple states in subsequent levels.

B. Planning with Hierarchical POMDPs

Initially, the top level POMDP is solved. The solution of
the top level POMDP gives intuitively the general route the
robot should follow to reach the goal. Subsequently, the
POMDP at the lower level that contains the robot’s current
state is solved with its goal being to follow the direction
that the solution of the upper-level POMDP provided. In
the same manner, POMDPs at all levels are solved until
the bottom level is reached. The action obtained from the
solution of the bottom level POMDP is the one that the
robot will actually perform.

III. POMDP SOLUTION FOR CONTROLLING
THE ROBOT’S SPEED

To solve a POMDP, the optimal policy that maximizes
the infinite expected sum of discounted rewards from all
states has to be evaluated. The optimal policy for each
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states at a time stept, π∗t (s), is evaluated as the sum of
the immediate reward the robot will receive for the next
actiona it will perform and the expected discounted sum
of rewards from all states until time stept − 1 . This is
written as:

π∗t (s) = max
a
{R(s, a) + γ

∑

s′∈S
T (s, a, s′)π∗t−1(s′)},

whereγ is a discount factor. The discount factor deter-
mines how important are the future rewards the robot will
receive. Ifγ is zero, the robot will maximize the reward
it will receive for the next time step only.

To be able to decide about the velocity,v, of the robot
as well as the action,a, it should perform, the reward and
transition functions should take into account the robot’s
velocity as well as the action. Hence, the above equation
is rewritten as:

π∗t (s) = max
a,v
{Rm(s, a, v)

+ γ
∑

s′∈S
Tm(s, a, v, s′)π∗t−1(s′)},

wherev is the velocity with which the robot will perform
action a. Rm and Tm are the modified reward and
transition functions, respectively, that take into account
the robot’s velocity as well as the action.

As mentioned above, the POMDP parameters are not
altered to include information about the robot velocity.
Therefore, we need a formulation ofRm and Tm that
relates them to the originalR andT functions that were
built considering thenormal velocity of the robot only.
This is achieved by introducing the notion of theprojected
state of the robot.

When the robot is in states and performs an action
a with a velocity v, other than thenormal velocity, it
is expected to end up with high probability in a state
s′. Then, theprojected state is defined as the statesp,
where if the robot executes actiona, from statesp, with
its normal velocity it will end up with a high probability
to states′. Of course, ifv is thenormal velocity of the
robot, thensp is s. Fig. 2, illustrates how the projected
state is determined.

Having defined the projected state, the relation ofRm
and Tm to the originalR and T , respectively, can now
be defined. By the definition of the projected statesp, the
relation ofTm to T is straightforward, and is written as:

Tm(s, a, v, s′) = T (sp, a, s′).

The definition ofRm is not as straightforward as for
Tm. If Rm is defined asRm(s, a, v) = R(sp, a), then the
robot would always choose to move with thefast speed.

Fig. 2. Definition of the projected statesp.

This is because thefast speed will always get the robot
closer to the goal and thus the reward that it will receive
will be bigger. Instead, it is desirable that the robot moves
at a different speed from itsnormal speed only if it has
to avoid an obstacle. For that reason change of speed is
penalized.

The penalty factor for change of speed is defined in
relation to the reward function to ensure that the robot
has the desirable behavior. The reward function is built
by calculating the distance of each grid cell to the goal
position. The value assigned to each grid cell is the
distance to the goal position, inverted and normalized.
Therefore, the reward value of neighboring cells will
always differ by a certain amount, as it can be seen in
Fig. 3(a). When the static OGM is built, the average
expected difference of the reward value between adjacent
grid cells for every actiona, Ediff(a), can be evaluated.
For example, in Fig. 3(a), it can be seen that for action
North the difference of the reward values is always0.125.
Hence,Ediff(a) will be used as a penalty value.

Thus, we defineRm as:

Rm(s, a, v) = R(sp, a)− α · |v − vn|
vn

· Ediff(a),

where vn is the normal velocity of the robot andα is
a constant that controls how preferable are the velocity
changes. The bigger the value ofα, the less preferable
the velocity changes are. The|v−vn|vn

factor, ensures that
whenv is thenormal velocity, the reward the robot will
receive will not be penalized. It also accommodates for
the effect of the difference between thefast or slow
velocity with thenormal velocity on the reward the robot
receives byR(sp, a). For example, when thefast velocity
is double thenormal velocity, then we expect that the
reward the robot will receive in these two cases will differ
by Ediff(a). In the case that thefast velocity is triple
the normal velocity, then |v−vn|vn

will be equal to2, as
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we expect that the reward the robot will receive in these
two cases will differ by2× Ediff(a).

When there is no obstacle in the route of the robot to its
goal, the reward values will be unaltered and dependent
only on the distance to the goal. Hence, in the case of the
fast velocity, the reward the robot will receive after being
penalized, will be the same with the reward the robot will
receive for choosing thenormal velocity, for α equal to
1. In the case that there is an obstacle moving in the route
of the robot to its goal, then the reward values of the cells
that are predicted to be occupied by the obstacle in the
future will be discounted. Then, the reward the robot will
receive forfast velocity will be bigger than the reward
for normal velocity even after it is penalized for changing
speed.

An example for this case is illustrated in Fig. 3(b).
It is assumed that there is an obstacle moving in the
environment. The reward value of the cell that corresponds
to the obstacle’s current position is set to zero. The
reward value of the cells that are in the trajectory from
the obstacle’s current position to its predicted destination
position (the shaded cells in the figure) is discounted. The
original reward value of these cells can be seen in Fig.
3(a). The discount of the reward values is not the same for
all cells, since it depends on the estimate of how far in the
future each cell will be occupied. The robot is currently
at the cell denoted withs. If the robot moves with the
normal velocity, the maximum reward it will receive is
0.375 for actionNorth or East. When the reward values
for the fast velocity are evaluated, it can be seen that
the reward for executing actionNorth-Eastwill be 0.5.
That is because the robot will end up in the state denoted
with s′, and the reward it will receive is the reward for
executing actionNorth-Eastfrom the state denoted withsp
with the normal velocity, minus the expected difference
in the reward values for actionNorth-East. Hence, the
robot will move with thefast velocity and bypass the
moving obstacle.

In the case of theslow speed, the reward the robot
will receive for executing any action from the projected
state will always be smaller than the reward the robot
will receive for choosing thenormal speed, when there
is no obstacle. This reward will be further decreased by
the penalty factor. Therefore, for the robot to choose the
slow speed, the reward it receives for thenormal and
fast speed has to be smaller. This will be the case when
there is an obstacle very close to the robot and did not have
a long-term prediction to be able to avoid it by increasing
its speed.

A. Belief Update

The belief the robot has for being in a states, is updated
every time the robot executes an actiona, and obtains an
observationz. The belief the robot has at timet that it

(a)

(b)

Fig. 3. (a) The static OGM and (b) An example of the robot choosing
to move with thefast velocity.

is in a states, b′(s), after taking actiona and making
observationz, is the probabilityP (s|z, a, b), whereb is the
belief the robot has for all states at timet− 1. The belief
update can be expressed in terms of the observation and
transition functions of the POMDP, according to Bayes
rule as shown in the equation below.

b′(s) = P (s|z, a, b)
=

P (z|s, a, b)P (s|a, b)
P (z|a, b)

=
P (z|s, a, b)∑s′∈S P (s|a, b, s′)P (s′|a, b)

P (z|a, b)
=

P (z|s, a)
∑
s′∈S P (s|s′, a)P (s′|b)
P (z|a, b)

=
O(s, a, z)

∑
s′∈S T (s, a, s′)b(s′)
P (z|a, b)

As before, this equation has to be expressed in terms of
a velocity v, as well as an actiona. Thus, it is rewritten
as:

b′(s) =
Om(s, a, v, z)

∑
s′∈S Tm(s, a, v, s′)b(s′)
P (z|a, b) .
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Fig. 4. The main entrance hall of the FORTH building where the
experiments were conducted.

The relation ofOm to the original observation function
O, using the projected statesp, is straightforward and is
written as:

Om(s, a, v, z) = O(sp, a, z)

.
Finally, the belief update equation becomes

b′(s) =
O(sp, a, z)

∑
s′∈S T (sp, a, s′)b(s′)
P (z|a, b) .

IV. RESULTS

The experiments were performed in the main entrance
hall of the FORTH building, an area of approximately
250m2, shown in Fig. 4. The robot had to reach the goal
position that was given and avoid people walking in the
environment. Many experiments have been conducted and
all confirmed the performance of the proposed method.
Here we present sample results (see video) that illustrate
its effectiveness.

The environment’s area was discretized in cells of
10cm2. The action angles and orientation of the robot were
discretized in steps of10o. The total number of states of
the robot was approximately 1 million. To be able to solve
the POMDP in real time the hierarchical representation of
POMDPs, explained in Section 2 of this paper, has been
used with 4 levels.

The robot’snormal, fast and slow velocity was set
to 1m/sec, 2m/sec and0.5m/sec, respectively.

In the example figures, points marked with “S” and “G”
are the start and end position of the robot respectively. The
robot’s position at each time step is shown with a circle
point and the obstacle’s position is shown with a rectangle
point.

A. Avoiding obstacles withfast velocity

In the example case, shown in Fig. 5, the robot has to
reach the goal position but there is an obstacle moving
that blocks its trajectory. The robot starts moving in the
optimal direction to reach the goal position but at the time
step shown in Fig. 5(a), the robot has the prediction of

(a) t = 9 (b) t = 17 (c) t = 46

Fig. 5. The robot moves atfast speed to avoid an obstacle.

the obstacle’s movement that its going to block its route.
As shown in Fig. 5(b), the robot starts moving with the
fast velocity to bypass the obstacle. After the robot has
passed the area that was predicted to be occupied by the
obstacle, it reverts to thenormal velocity to continue its
movement to the goal position. With this behavior, the
robot eliminated the need of making suboptimal actions
to make a detour in order to avoid the obstacle.

B. Avoiding obstacles withslow velocity

In the example, shown in Fig. 6, the robot has to
simply move in theNorth direction to reach the goal
position. There is an obstacle moving parallel to the
robot and another one moving around the column of the
building. The robot starts moving in theNorth direction
as expected to reach the goal position. At the time step
shown in Fig. 6(a), the robot detects the obstacle that was
moving around the column and makes the prediction that
it is going to block its direction. The obstacle is close to
the robot and hence it cannot increase its speed to bypass
it. In addition, the robot cannot move to the left or the right
because on the one side there is the second obstacle while
on the other side there is the column. For that reason, its
slows down until the obstacle moves away from its path,
as shown in Fig. 6(b). Following, it reverts to itsnormal
speed to continue its movement towards the goal position.
Enabling the robot to decide to slow down, it prevented
making the decision to make a detour by turning to the
right where it would come too close to both obstacles.

C. Avoiding obstacles with a detour

In the last example, we demonstrate a case where the
robot cannot make a safe decision to move with either the
fast or the slow velocity to avoid an obstacle. In such
cases, the robot is able to decide to make a detour. In
the example case, shown in Fig. 7, there is an obstacle
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(a) t = 21 (b) t = 23 (c) t = 41

Fig. 6. The robot moves atslow speed to avoid an obstacle.

(a) t = 7 (b) t = 21 (c) t = 51

Fig. 7. The robot makes a detour to avoid an obstacle.

that blocks completely the optimal trajectory to the goal
and another one that moves towards the optimal trajectory.
The robot makes the prediction of the movement of both
obstacles and estimates that it cannot move with thefast
or slow velocity, since one of the obstacles is moving
towards itself, as shown in Fig. 7(a). Hence, it decides to
make a detour to avoid both obstacles.

V. CONCLUSIONS AND FUTURE WORK

In this paper it is proposed to use prediction techniques
within a probabilistic framework to control the robot’s
velocity to avoid obstacles in dynamic environments. The

decision about the robot’s speed is made by modifying the
solution of the POMDP instead of adding the speed actions
into the action set of the model. This choice prevented the
further increase of the memory requirements of the model.
Future work involves considering having as speed actions
increase speed and decrease speed instead of having
three standard speeds. The prediction of the obstacle’s
velocity will also be considered to be able to control the
robot’s velocity more effectively.
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