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Abstract This paper considers the problem of autonomous
robot navigation in dynamic and congested environments.
The predictive navigation paradigm is proposed where prob-
abilistic planning is integrated with obstacle avoidance
along with future motion prediction of humans and/or other
obstacles. Predictive navigation is performed in a global
manner with the use of a hierarchical Partially Observable
Markov Decision Process (POMDP) that can be solved on-
line at each time step and provides the actual actions the
robot performs. Obstacle avoidance is performed within the
predictive navigation model with a novel approach by decid-
ing paths to the goal position that are not obstructed by other
moving objects movement with the use of future motion pre-
diction and by enabling the robot to increase or decrease its
speed of movement or by performing detours. The robot is
able to decide which obstacle avoidance behavior is optimal
in each case within the unified navigation model employed.

Keywords Navigation · Obstacle avoidance · Motion
prediction · Path planning · POMDPs

1 Introduction

For humans, the ability to navigate intentionally is eminent.
For mobile robotic systems, however, navigation in dynamic
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real-world environments is an extremely complex and chal-
lenging task. Such environments are characterized by their
complex structure and the movement of humans and objects
in them. The robot has to avoid collision with obstacles and
also reach its goal position in a fast and optimal manner.

The problem of a robot navigating in a crowded environ-
ment is treated so far mainly by incorporating separate co-
operating modules for global path planning, local path plan-
ning (obstacle avoidance) and localization. This paper uti-
lizes a unified model that incorporates the modules for lo-
calization, global and local motion planning. The employed
model is a hierarchical POMDP specifically designed for au-
tonomous robot navigation, termed as the Robot Navigation-
HPOMDP (RN-HPOMDP), originally presented in [9]. The
RN-HPOMDP enables us to perform all aspects of nav-
igation in a probabilistic and unified manner since there
is no intervention of any other external module. The RN-
HPOMDP offers great advantages since probabilistic ap-
proaches for localization and mapping have been widely em-
ployed but this is not the case for robot motion planning.
The modelling of the RN-HPOMDP is presented in [9] and
in this paper its application under the predictive navigation
paradigm is introduced.

Probabilistic planning is performed under the predictive
navigation paradigm in order to be able to simulate as best as
possible the human behavior for obstacle avoidance. Future
motion prediction is an intrinsic behavior of humans. When
humans walk in an environment they perceive through their
vision the movement of other humans or other moving ob-
jects. Humans use this information and attempt to estimate
the easiest, i.e. unblocked, and shortest path they should fol-
low to reach their destination. This is in effect a predictive
behavior. It would be desirable for an autonomous robot to
develop a similar behavior. Future motion prediction allows
to obtain paths that are not only optimal in a time or distance
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traveled sense but it can also foresee situations where the ro-
bot might get blocked and chooses new paths that avoid such
situations.

The predictive navigation paradigm presented in this pa-
per enables the robot to decide the best behavior for obsta-
cle avoidance in each case. The robot can decide at any time
step to either change completely its path to its goal position
in order to follow an unblocked path, or perform a detour.
The detour will be executed well before the robot gets too
close to the obstacles and in addition the robot has foreseen
that after performing this detour it will be able to complete
its path to the goal position without any other obstructions.
Furthermore, the robot can also decide to change its speed of
movement to a lower one to allow an obstacle to move away
from its motion path or bypass the obstacle by increasing its
speed.

Obstacle avoidance in the proposed framework offers
great advantages over standard methods present in [2, 3, 10,
13, 18, 21, 23]. The main disadvantage of all these methods
is that they treat the problem locally. The local treatment of
the problem directs the robot into executing globally subop-
timal paths to its destination point. This is due to the fact
that they stick on the initial planned path to the destination
point obtained by the global path planning module and do
not replan no matter the changes that occur in the environ-
ment.

Furthermore, obstacle avoidance in the proposed ap-
proach is performed within the predictive navigation frame-
work, i.e. it utilizes future motion prediction of humans
and/or other objects to decide what is the best approach the
robot should employ. In the proposed approach two kinds of
prediction are utilized: short-term and long-term. The short-
term prediction refers to the one-step ahead prediction and
the long-term to the prediction of the final destination point
of the obstacle’s movement. One-step ahead prediction has
been previously utilized for obstacle avoidance in [5, 6, 12,
17, 19, 20, 24, 25, 27, 28]. However, knowing an obstacle’s
current position and its immediate next time-step position is
not indicative about the general obstacle behavior. In result,
one-step ahead prediction can potentially assist the obstacle
avoidance module locally but cannot be that effective when
deciding the final complete path the robot will execute to
reach its destination position. For this reason, long-term pre-
diction is employed that estimates the final destination point
of an obstacle’s motion trajectory. Recent methodologies for
predicting the whole path an obstacle is following have been
proposed in [1, 4, 16, 22, 26].

Finally, the robot can also avoid obstacles either by in-
creasing its speed to bypass the obstacle or decreasing its
speed to let the obstacle move away from the robot. Con-
sequently, future motion prediction is also exploited to en-
able the robot to decide if it should increase or decrease its
speed to avoid an obstacle more effectively. Once more, this

feature is integrated into the global navigation model, the
RN-HPOMDP.

Experimental results have shown the applicability of the
proposed approach for predictive autonomous robot naviga-
tion in dynamic environments where humans and moving
objects are avoided efficiently and the robot follows optimal
paths to reach its destination.

The remaining of this paper describes how predictive
navigation is achieved with the use of the RN-HPOMDP
that is outlined in Sect. 2. First, it is described how future
motion prediction is obtained in Sect. 3 and how it is inte-
grated to the global navigation model in Sect. 4. Following,
the methodology used to enable the robot to avoid obstacles
by changing its speed of movement is presented in Sect. 5.
Finally, the results and the conclusions of this work are pre-
sented in Sects. 6, 7 and 8, respectively.

2 Partially Observable Markov Decision Processes

In this paper, we utilize a hierarchical representation of
POMDPs specifically designed for autonomous robot nav-
igation, the RN-HPOMDP as detailed in [9]. Here, the for-
mulation of the RN-HPOMDP is presented for clarity rea-
sons and the rest of this paper is concerned with its ap-
plication to the predictive navigation problem. The RN-
HPOMDP can efficiently model large real world environ-
ments at a fine resolution and can be solved in real time. It is
utilized as a unified framework for the autonomous robot
navigation problem, where no other external modules are
used to drive the robot. In other words, the RN-HPOMDP
integrates the modules for localization, planning and obsta-
cle avoidance. The RN-HPOMDP is solved on-line at each
time step and decides the actual actions the robot performs.

2.1 POMDP Formulation for Robot Navigation

In the following we present a formulation of POMDPs for
autonomous robot navigation in a unified framework. The
POMDP decides the actions the robot should perform to
reach its goal and also robustly tracks the robot’s location
in a probabilistic manner. In the problem considered in this
paper, we are interested in dynamic environments and hence
the POMDP also performs obstacle avoidance. All three
functionalities are carried out without the intervention of any
other external module.

In our implementation the robot perceives the environ-
ment by taking horizontal laser scans. In addition, an occu-
pancy grid map (OGM) of the environment obtained at the
desired discretization is provided. The OGM is used to de-
termine the set of possible states the robot might occupy.
Laser measurements are used to obtain observations. In the
following, the elements of a POMDP, 〈S, A, T , R, Z, O〉,
are instantiated for robot navigation as:
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Set of states, S : Each state in S corresponds to a discrete
entry cell in the environment’s occupancy grid map (OGM)
and an orientation angle of the robot with respect to
a global reference system, i.e. each state s is a triplet
(x, y, θ).

Set of actions, A: It consists of all possible rotation actions
from 0◦ to 360◦ termed as “action angles”.

Set of observations, Z : The observation set is the element
of the POMDP that assists in the localization of the robot,
that is the belief update after an action has been executed.
The set of observations is instantiated as the output of the
iterative dual correspondence (IDC) algorithm of Lu and
Milios [15] for scan matching.

Reward function, R: Since the proposed POMDP is used as
a unified framework for robot navigation that will provide
the actual actions the robot will perform and also carry out
local obstacle avoidance for moving objects, the reward
function is updated at each time step. The reward func-
tion is built and updated at each time step, according to
two reward grid maps (RGMs): a static and a dynamic as
in [7]. The RGM is defined as a grid map of the environ-
ment in analogy with the OGM. Each of the RGM cells
corresponds to a specific area of the environment with the
same discretization of the OGM, only that the value asso-
ciated with each cell in the RGM represents the reward that
will be assigned to the robot for ending up in a specific cell.
The static RGM is built once by calculating the distance of
each cell to the goal position and by incorporating informa-
tion about cells belonging to static obstacles. The dynamic
RGM is responsible for incorporating into the model in-
formation about the current state of the environment, i.e.
whether there are objects moving within it or other un-
mapped objects. The detailed procedure for building and
updating the RGMs is given in Sect. 4.

Transition and observation functions, T and O: They are
initially defined according to the motion model of the robot
and then they are learned as detailed in [9].

3 Motion Prediction

Motion prediction is utilized to obtain a more effective be-
havior for obstacle avoidance. Two kinds of prediction are
used: short-term and long-term prediction. Short-term pre-
diction refers to the one-step ahead prediction of a human’s
or an other object’s future position. Short-term prediction
is obtained by a Polynomial Neural Network (PNN) that is
trained with an evolutionary method as originally presented
in [7]. The PNN is trained once offline with motion data ob-
tained and thus there is no computational overhead for short-
term prediction. Furthermore, the results obtained from the
PNN are significantly more accurate than any other simpler

prediction model. Long-term prediction refers to the predic-
tion of the final destination point of a human’s or an other
object’s motion trajectory.

3.1 Long-Term Prediction

Prediction methods known so far give satisfactory results for
one-step ahead prediction. For the robot navigation task it
would be more useful to have many-steps ahead prediction.
This would give the robot sufficient time and space to per-
form the necessary manoeuvres to avoid obstacles and more
importantly change its route towards its destination position.
It is desirable for the robot to develop a behavior that will
prefer routes that are not crowded and thus avoid ever get-
ting stuck.

It is unlikely that any of the available standard predic-
tion methods would give satisfactory results for many-steps
ahead prediction, given the complexity of the movement be-
havior. To achieve this, it is proposed to employ a long-term
prediction mechanism. The long-term prediction refers to
the prediction of a human’s final destination position. It is
plausible to assume that humans mostly do not just move
around but instead move purposively with the intention of
reaching a specific location. Our approach for performing
long-term prediction is based on the definition of the so-
called “hot” points (HPs) in the environment, i.e. the points
where people would have interest in visiting them. For ex-
ample, in an office environment desks, doors and chairs
are objects that people have interest in reaching them and
could be defined as hot points of interest. In a museum,
the points of interest can be defined as the various exhibits
that are present. Moreover, other features of the environ-
ment such as the entry points, passages, etc., can be de-
fined as points of interest. Evidently, hot points of interest
convey semantic information about a workspace and hence
can only be defined with respect to the particular environ-
ment.

The HPs in an environment can be defined either man-
ually or through an automated procedure. In Sect. 3.3, an
automated procedure for obtaining a map of HPs is pre-
sented. The methodology for obtaining the long-term pre-
diction is given for both cases where the HPs are defined
manually and when they are defined through a learned map.
A primitive version of long term prediction with manually
defined HPs was presented in Foka and Trahanias [7] eval-
uated only in simple simulated environments. The manually
defined hot points for the FORTH main entrance hall where
the experiments were conducted are shown in Fig. 1. First,
the methodology for obtaining the estimated destination po-
sition of a moving object with manually defined HPs is pre-
sented and then this approach is extended to be used with a
learned map of HPs.



82 Int J Soc Robot (2010) 2: 79–94

Fig. 1 The “hot” points defined for the FORTH main entrance hall,
marked with “x”

3.2 Estimation of a Moving Object’s Destination Position

Once the points of interest of an environment are defined,
then the long-term prediction refers to the prediction of
which Hot Point (HP) a moving obstacle is going to ap-
proach. At each time step t , the tangent vector of the ob-
stacle’s positions at times t − 1, t and the predicted position
at time t + 1 is taken. This tangent vector essentially deter-
mines the global direction of the obstacle’s motion trajec-
tory, termed as Global Direction of Obstacle (GDO). This
direction is employed to determine which HP a moving ob-
stacle is going to approach. A HP is a candidate final des-
tination point if it lies roughly in the direction of the eval-
uated tangent vector, the GDO. In order to find such HPs,
we establish a field-of-view, that is an angular area centered
at the GDO. HPs present in the field-of-view are possible
points to be reached, with a probability wi , according to a
probability model. The latter is defined as a Gaussian proba-
bility distribution centered at the GDO with a standard devi-
ation in proportion to the angular extent of the field-of-view.
Thus, points of interest present in the center of the field-of-
view are assigned a high probability, and points of interest
present in the periphery of the field-of-view are assigned a
lower probability.

With this approach, at the beginning of the obstacle’s
movement a multiple number of points of interest will be
present in its field-of-view but as it continues its movement
the number of such points is decreased and finally it con-
verges to a single point of interest.

In Fig. 2 an example of the procedure for long-term pre-
diction with manually defined HPs is shown. At the begin-
ning of the obstacle’s movement the long-term prediction
obtained is shown in Fig. 2(a). It can be observed that at this
point there are multiple candidate destination points for the
obstacle’s movement. However, the destination point that in-
fers that the moving objects is going to walk down the stairs
is estimated as the most probable destination point of the
obstacle’s movement as directed by the GDO. If the whole
obstacle motion trajectory, shown in the same figure, is ob-
served it is obvious that the estimated destination point dic-
tated by the long-term prediction methodology is not the
correct one. However, the long-term prediction obtained is
utilized partially. Therefore, when a long-term prediction

Fig. 2 An example of making long-term prediction for an object’s
movement

is obtained, it is utilized partially only for a short interval
that is close to the obstacle’s current position. Hence, the
long-term prediction when utilized only partially it provides
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a good estimate of the future motion of the obstacle’s move-
ment. The partial utilization of the obtained long-term pre-
diction is fully detailed in Sect. 4, where its integration to the
navigation model is explained. Additionally, the long-term
prediction is updated at each time step, that is a short time
interval, and hence bad estimates can be corrected quickly.
Consequently, as the object has advanced through its motion
trajectory the long-term prediction estimate is closer to the
actual destination point as shown in Fig. 2(b).

The example shown in Fig. 2 has been chosen such that
to demonstrate the weakness of using manually defined HPs
and hence necessitate the use of the map of HPs. When the
obstacle is close to the end of its motion trajectory, as shown
in Fig. 2(c), there is no HP defined in the direction dictated
by the GDO. Instead, there are two HPs in the periphery of
the GDO, and one of them is the actual destination point of
the obstacle. However, the actual destination point will be
assigned a low probability since it is located in the periph-
ery of the GDO. The same holds for the other HP located
within the field-of-view. In this scenario, if there was a map
of HPs available there would be defined a whole area of HPs
instead of two unique points. Specifically, in the area of the
map under discussion there are two sofas where people of-
ten go there and sit. When the map of HPs is constructed
the whole area covered by the sofas is determined as an in-
teresting point instead of the two unique points in the cen-
ter of the sofas that have been manually defined. Hence, we
would still have obtained a long-term prediction with high
probability. Additionally, the probability of each estimated
destination point is not determined only according to each
location within the field-of-view but also to the popularity
of this point as determined through the learning procedure.

The map of HPs can also take care of the worst case sce-
nario where there are not manually defined HPs present in
the field-of-view marginally and hence there would be no
estimate available.

3.3 Map of Hot Points

An alternative approach to defining manually the hot points
of the environment is to obtain a map of hot points of the
environment through an automated procedure.

The map of hot points is a probabilistic map that gives
for each point of the environment the probability that this
point is a hot point. This map is built off-line by a learning
procedure that uses motion traces of humans operating in the
environment. At every step of each collected motion trace
the probabilities of the map of hot points are updated in a
similar manner to this used when building an occupancy grid
map of an environment from sensor readings.

Having obtained the Global Direction of Obstacle (GDO),
defined in Sect. 3.2, the field-of-view is determined. The
field-of-view now defines the area of cells that their prob-
abilities of being a hot point is going to be updated. Lines

Fig. 3 The probability assignment for possible hot points is dependent
on the angular distance of the considered cell and the GDO and its
distance from the obstacle’s current position

from the obstacle’s current position at all possible angles
within the field-of-view are examined whether they intersect
with a feature of the environment. This intersection point is
considered as a possible hot point. The probability assign-
ment is performed by obeying two rules:

– the smaller the angular distance, λ, of the candidate cell
and the GDO the higher the probability;

– the smaller the distance, δ, of the candidate cell and the
obstacle’s current position the higher the probability.

The probability of a cell (i, j) being a hot point given an
obtained GDO at time t , P(Hi,j ), is given by:

P(Hi,j ) = 1

2

(
D − δ

D
+ Λ − λ

Λ

)
.

As shown in Fig. 3, the maximum angular distance from
the GDO is Λ and is defined by the size of the field-of-view.
D is a constant that determines the maximum distance from
the object’s current position allowed for a cell to be consid-
ered as a hot point. The probabilities are updated according
to Bayes rule every time a certain cell is considered to be a
hot point according to the motion traces.

Having obtained the probability map of hot points long-
term prediction is now performed using this probability map
by considering all lines within the field-of-view that inter-
sect with a feature of the environment according to the prob-
ability assigned at the map of hot points.

The map of HPs obtained for the FORTH main entrance
hall is shown in Fig. 4. The map of HPs was constructed by
taking laser measurements at various times of the activity in
the FORTH main entrance hall in order to obtain real motion
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Fig. 4 The map of “hot” points obtained for the FORTH main entrance
hall. The same area of the environment in a CAD map is shown in Fig. 2

paths that will reveal the true points of interest in the envi-
ronment at any time of a day. Each hot point present in the
map has a probability associated with it that infers how often
it is visited by humans. The same area of the environment
is shown in CAD map in Fig. 2, to reveal the point corre-
spondence to actual features. This probability is used when
obtaining multiple HPs as estimated destination positions to
prune away bad estimates as dictated by the procedure ex-
plained in Sect. 4 that details how the result of long-term
prediction is included in the HPOMDP.

3.4 Motion Tracking

The methodology used for object tracking in this paper is a
modification of the commonly used Kalman tracker. In the
Kalman tracker, a Kalman filter is used for predicting the
position of a previously detected object and hence decide if
the object actually moved to its predicted position. In our
approach, the Kalman filter is substituted by the short-term
and long-term prediction obtained as described in the previ-
ous sections. The data association is performed by a nearest
neighbor filter that is validated by the long-term prediction
module.

Initially, all range measurements not belonging to objects
present in the static map of the environment are regarded
as moving objects. The position of each currently moving
object has to be decided if it belongs to the trajectory of a
previously detected object or if it is a newly detected object.
Matching the positions of the currently detected moving ob-
jects with previously detected objects is performed by utiliz-

ing the short-term and long-term prediction. For each previ-
ously detected object a short-term and long-term prediction
is obtained. The distance of a currently detected moving ob-
ject position with the short-term prediction of a previously
detected object is evaluated. The minimum evaluated dis-
tance of all previously detected objects for a specific current
position is regarded to belong to this object if it is smaller
than a certain threshold.

However, data association with the nearest neighbor filter
is verified by the long-term prediction for the motion trajec-
tory of the object indicated to be matched with. If the newly
detected object’s position belongs to the trajectory indicated
by the long-term prediction with a probability higher than
a certain threshold then matching is achieved. Otherwise,
matching is verified with the immediate next object in dis-
tance measures as dictated by the nearest neighbor filter.

Remaining positions of currently detected objects that
were not matched by the short-term or long-term prediction
are regarded as new objects.

4 Prediction Integration into the Model

The short-term and long-term prediction are integrated in
the global model by including them in the reward function
of the POMDP. The reward function is built and updated at
each time step, according to two reward grid maps (RGMs):
a static and a dynamic as originally defined in [7]. The RGM
is defined as a grid map of the environment in analogy with
the Occupancy Grid Map (OGM). Each of the RGM cells
corresponds to a specific area of the environment with the
same discretization of the OGM, only that the value associ-
ated with each cell in the RGM represents the reward that
the robot will receive if it ends up in a specific cell. Thus, it
would be desirable that this value gives a description of the
state of this square area in the environment as

– how far it is from the goal position,
– whether it is occupied by a static obstacle,
– whether it is occupied by a moving obstacle, i.e. a human

or another object,
– whether it will be occupied and how soon by a moving

obstacle.

The static RGM is built once by calculating the distance
of each cell to the goal position and by incorporating infor-
mation about cells belonging to static obstacles. Hence, it
includes the first two sources of information concerning the
goal position and static obstacles.

Information provided from the short-term and long-term
prediction modules is included in the dynamic RGM. The
inclusion of the short-term prediction is trivial and it in-
volves zeroing the reward associated with the grid cell that
is the predicted next-time position of the obstacle.
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Fig. 5 (a) The static and (b) dynamic RGM. Reward discount is per-
formed according to the obtained long-term prediction. Long-term pre-
dictions for hot points present in the periphery of the field-of-view have
low probability, wi , and thus the reward discount is smaller

The long-term prediction refers to the prediction of the
destination position of the obstacle’s movement. Thus, the
reward value of the grid cells that are in the trajectory from
the obstacle’s current position and its predicted destination
position is discounted. Hence, the value of a cell, p, in the
dynamic grid map, DGM, is given by a function

DGM(p) = wi · extentγ ,

where wi is the probability that the predicted destination
point will be reached, extent is a constant that controls how
far the robot should stay from obstacles and γ is the fac-
tor that determines how much the value of extent should be
discounted.

The probability that the predicted destination point will
be reached, wi , is defined in according to the position of the
predicted point within the considered obstacle’s movement
field-of-view as shown in Fig. 5. Thus, wi will be higher
when the predicted destination point lies in the center of
the field-of-view, and lower when it is at the periphery. The
value of γ depends on the estimate of how far in the future
this cell will be occupied, and it takes values in the range
of [0,1]. For example, if a cell p is to be occupied shortly
in the future, γ will be close to 0, and thus the reward as-
signed to cell p will be small. On the other hand, if cell p

is to be occupied far in the future, γ will be close to 1 and
thus the reward assigned to this cell will not be significantly
discounted. The γ factor is defined such that the long-term
prediction is utilized only partially for predictions that are
not too far in the future. Furthermore, the γ factor is depen-
dent on the distance between the robot’s current position and
the position of predicted object position to be discounted. In
this way, the movement of objects and humans that are far
from the area that the robot operates currently do not affect
the reward values significantly.

Superimposing the static and dynamic RGMs provides
the reward function that is updated at each time step. In
Fig. 5 an example of discounting the reward values for an
obtained long-term prediction is shown.

5 POMDP Solution for Controlling the Robot’s Speed

In this section, we develop a methodology of solving
POMDPs that allows the robot to decide if it should increase
or decrease its speed to avoid an obstacle more effectively,
originally presented in [8]. Without control of its speed, the
robot has to make detours or follow a suboptimal path to
reach its goal in order to avoid collision with obstacles. In
many cases, the robot can avoid making these suboptimal
actions if it can either increase its speed to bypass the obsta-
cle or decrease its speed to let the obstacle move away from
the robot.

The speed of the robot is chosen not to be included as a
characteristic of its state, as with its location and orientation.
Such a choice would further increase the state space or ac-
tion space. Instead, the solution of the POMDP is modified
to account for the speed decision that the robot has to make.

The robot is allowed to move at three different speeds:
normal, fast and slow.

5.1 Exact Solution

To solve a POMDP exactly it is required to evaluate the α-
vectors that form a policy tree as shown in Fig. 6 by the
following equation as in [14]:

V ∗
t (b) = max

p∈P
b · αt

p
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Fig. 6 An example policy tree of a POMDP with pairs of actions and
speeds

that searches all possible policy trees P , to maximize this
value function for the belief b. Recall that policy trees are
defined by having as nodes actions, a, that are connected
with each possible observation, zi . To decide the action to
be executed as well the speed v of the robot, nodes are now
defined by pairs of actions and speeds.

Since policy tree nodes are composed of action-speed
pairs the value function of a policy tree has now to be eval-
uated by considering the choice of the action as well as the
speed. The value function of a policy tree is evaluated by the
following equation, that has incorporated the speed decision:

V
p
t (b)

=
∑
s∈S

b(s)

[
Rm(s, a, v)

+ γ
∑
z∈Z

∑
s′∈S

Om(z, s′, a, v)Tm(s, a, v, s′)V zp

t−1(s
′)
]
.

The above equation dictates that it is required to a have a
modified version of the reward, transition and observation
function. However, instead of defining new POMDP func-
tions, the notion of the projected state is defined that allows
to use the original POMDP functions.

5.2 The Projected State

When the robot is in a state s and performs an action a with
a velocity v, other than the normal velocity, it is expected
to end up with a certain probability in a state s′. Then, the
projected state is defined as the state sp , where if the robot
executes the same action a, from state sp , with the normal
velocity it will end up with the same probability to state s′.
Of course, if v is the normal velocity of the robot, then sp
is s.

In Fig. 7 an example of determining the projected state
when the robot moves with the fast and the slow speed is
illustrated. For clarity reasons, in this example it is assumed
that the fast speed is twice the normal speed and the slow
speed is half the normal speed. In the case the robot moves
at fast speed it forwards two grid cells since with the normal

Fig. 7 Definition of the projected state sp

speed it would forward one grid cell. On the other hand, in
the case the robot moves at slow speed it will remain in the
grid cell.

The projected state sp is determined geometrically by
triangulation in the continuous space. The initial state s is
transferred to the continuous space regarding that the robot
is in the center location of the grid cell represented by state s.
Following, the vector of the action angle is constructed in
analogy with the vector of the action angle for normal ve-
locity. When the POMDP is built a certain normal velocity
is considered along with a certain duration of movement of
each action cycle. Therefore, a certain normal speed motion
vector is always assumed in the initial transition probabil-
ities. This vector is used to determine the fast speed mo-
tion vector or slow speed motion vector as the fast and slow
speeds are defined as a fraction of the normal speed. Hence,
by triangulation the resulting state s′ is determined. Next,
the inverse procedure is used to determine the projected state
sp . Knowing the state s′ and the normal speed motion vec-
tor, triangulation is performed to determine the location of
the projected state sp . Finally, the location of the projected
state sp is transferred from the continuous space to a discrete
grid cell.

The determination of the projected state sp is an approx-
imation according to the motion model of the robot used to
determine the transitions between states.

5.3 The Modified POMDP Functions

As mentioned above, the POMDP parameters are not altered
to include information about the robot velocity. Therefore,
a formulation of Rm and Tm that relates them to the original
R and T functions that were built considering the normal
velocity of the robot only is required. This is achieved by
utilizing the projected state of the robot.
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Having defined the projected state, the relation of Rm

and Tm to the original R and T , respectively, can now be
defined.

5.3.1 The Modified Transition Function Tm

By the definition of the projected state sp , the relation of Tm

to T is straightforward, and is written as:

Tm(s, a, v, s′) = T (sp, a, s′).

The above equation assumes that the transition probabili-
ties for executing a certain rotation action a at normal speed
are preserved when executing the same rotation action at the
fast or slow speed. This is a safe approximation since in the
context in which the change of speed is used, the robot will
move at a speed other than the normal speed for very short
intervals only, i.e. only when the robot has to bypass an ob-
stacle with the fast speed or allow it move way by slowing
down. Furthermore, the fast and slow speed are defined as
fractions of the normal speed that are rather small and there-
fore the motion behavior of the robot does not change dra-
matically.

5.3.2 The Modified Reward Function Rm

The definition of Rm is not as straightforward as for Tm.
If Rm is simply defined as Rm(s, a, v) = R(sp, a), then the
robot would always choose to move with the fast speed. This
is because the fast speed will always get the robot closer to
the goal and thus the reward that it will receive will be big-
ger. Instead, it is desirable that the robot moves at a different
speed from its normal speed only if it has to avoid an obsta-
cle. For that reason change of speed is penalized.

Rm(s, a, v) = R(sp, a) − penalty.

The penalty factor for change of speed is defined in relation
to the reward function to ensure that the robot has the de-
sirable behavior. The reward function is built by calculating
the distance of each grid cell to the goal position. The value
assigned to each grid cell is the distance to the goal posi-
tion, inverted and normalized. Therefore, the reward value
of neighboring cells will always differ by a certain amount,
as it can be seen in Fig. 8(a). When the static OGM is built,
the average expected difference of the reward value between
adjacent grid cells for every rotation action a, Ediff (a), can
be evaluated.

Thus, we define Rm as:

Rm(s, a, v) = R(sp, a) − α · |v − vn|
vn

· Ediff (a),

where vn is the normal velocity of the robot and α is a con-
stant that controls how preferable are the velocity changes.

Fig. 8 (a) The static OGM and (b) an example of the robot choosing
to move with the fast velocity

The bigger the value of α, the less preferable the velocity
changes are. The |v−vn|

vn
factor, ensures that when v is the

normal velocity, the reward the robot will receive will not
be penalized. It also accommodates for the effect of the dif-
ference between the fast or slow velocity with the normal
velocity on the reward the robot receives by R(sp, a). For
example, when the fast velocity is double the normal veloc-
ity, then we expect that the reward the robot will receive in
these two cases will differ by Ediff (a). In the case that the
fast velocity is triple the normal velocity, then |v−vn|

vn
will

be equal to 2, as we expect that the reward the robot will
receive in these two cases will differ by 2 × Ediff (a).

When there is no obstacle in the route of the robot to
its goal, the reward values will be unaltered and dependent
only on the distance to the goal. Hence, in the case of the
fast velocity, the reward the robot will receive after being
penalized, will be the same with the reward the robot will
receive for choosing the normal velocity, for α equal to 1.
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In the case that there is an obstacle moving in the route of
the robot to its goal, then the reward values of the cells that
are predicted to be occupied by the obstacle in the future
will be discounted. Then, the reward the robot will receive
for fast velocity will be bigger than the reward for normal
velocity even after it is penalized for changing speed.

An example for this case is illustrated in Fig. 8(b). It is
assumed that there is an obstacle moving in the environment.
For clarity reasons, in this example the obstacle is assumed
to occupy a single cell. The reward value of the cell that cor-
responds to the obstacle’s current position is set to zero. The
reward value of the cells that are in the trajectory from the
obstacle’s current position to its predicted destination posi-
tion is discounted. The original reward value of these cells
can be seen in Fig. 8(a). The discount of the reward values
is not the same for all cells, since it depends on the esti-
mate of how far in the future each cell will be occupied.
The robot is currently at the cell denoted with s. If the robot
moves with the normal velocity, it will maximize its reward
when executing one of the suboptimal actions to reach the
goal since the reward for executing action North-East has
been discounted due to the long-term prediction. When the
reward values for the fast velocity are evaluated, it can be
seen that the reward for executing action North-East will be
the maximum. That is because the robot will end up in a
state where its reward has not been discounted due to long-
term prediction and even when the expected difference in the
reward values for action North-East is deducted it will still
remain bigger than all other rewards. Hence, the robot will
move with the fast velocity and bypass the moving obstacle.

In the case of the slow speed, the reward the robot will re-
ceive for executing any action from the projected state will
always be smaller than the reward the robot will receive
for choosing the normal speed, when there is no obstacle.
This reward will be further decreased by the penalty factor.
Therefore, for the robot to choose the slow speed, the reward
it receives for the normal and fast speed has to be smaller.
This will be the case when there is an obstacle very close to
the robot and did not have a long-term prediction to be able
to avoid it by increasing its speed.

5.3.3 The Modified Observation Function Om

The relation of Om to the original observation function O,
using the projected state sp , is straightforward and is written
as:

Om(s, a, v, z) = O(sp, a, z).

The above definition holds due to the way the observation
set has been defined in Sect. 2.1. An observation is actually
the distance the robot travelled when it has executed a cer-
tain action a. As a result, the relation of Om to the original
observation function O is in analogy with the relation to the
definition for the transition function.

5.4 Approximation Methods

The described methodology for controlling the robot’s speed
can also be applied with any of the approximation methods
reviewed in [11] with the use of the modified POMDP func-
tions.

In the case that the MLS heuristic is used the optimal
value function is computed as:

V ∗
t (s) = max

a∈A,v∈V
Qm

(
arg max

s∈S
(b(s)), a, v

)

where the modified Q-function, Qm, is now defined as:

Qt
m(s, a, v) = Rm(s, a, v) + γ

∑
s′∈S

Tm(s, a, v, s′)Vt−1(s
′).

In the case that the voting heuristic is used the optimal
value function is given by:

V ∗
t (s) = max

a∈A,v∈V

∑
s∈S

b(s)δ(πMDP(s), a, v)

where

πMDP(s) = arg max
a∈A,v∈V

Qm(s, a, v)

and

δ(ai, vi, aj , vj ) =
{

1, if ai = aj and vi = vj ,

0, if ai �= aj or vi �= vj .

In the same manner the modified POMDP functions can
be applied to other approximation methods present in the
literature.

6 Results

This section presents experimental results that validate the
proposed approach for autonomous robot navigation. Ini-
tially the experimental configuration for the real-world en-
vironment as well as the simulated one is presented. Finally,
results that demonstrate the behavior in general of the pre-
dictive navigation framework are illustrated.

6.1 Experimental Configurations

For testing the performance of the proposed framework, we
have performed extensive tests with both real and simulated
data. All real data have been assessed on Lefkos, an iRo-
bot B21r robotic platform of our lab, while acting in various
indoor areas of FORTH.
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Fig. 9 Avoiding two moving objects with a detour. The robot detects early in its movement that its path to the goal point, the stairs, will be
completely blocked by the two persons moving. Hence, it starts making a detour well before it faces any of the two persons

6.2 Real Environment Experiments

In this section a representative set of result of the robot op-
erating in the FORTH main entrance hall is shown. The ro-
bot was set to operate for more than 70 hours. The envi-
ronment was modelled with a RN-HPOMDP with size of
the set states, actions and observations being respectively
|S| = 18,411,520, |A| = 256 and |Z| = 24. This results
to grid cells of actual size 10 cm2. Experiments were per-
formed in a dynamic environment where people were mov-
ing within it. In all cases the proposed navigation model has
shown a robust behavior in reaching the assigned goal points
and avoiding humans or other objects. Following, sample
paths the robot followed to reach its goal position by demon-
strating the four main behaviors it uses to avoid obstacle are
presented.

6.2.1 Avoiding Obstacles with a Detour

In this experiment we demonstrate how the robot avoids two
humans moving in the environment in such a manner that
they block its route to the goal position. If there were no
humans or other objects moving, the robot would follow
a straight path to its goal, defined for our experiments as
shown in Fig. 9. In our experiment two humans are mov-
ing in the environment. One of them is moving towards the
straight path that the robot would follow to reach its goal
and the other one is moving in a straight direction vertical to
the one the robot would follow. As shown in the figures the
robot detects the moving humans and obtains the long-term
prediction of their movement and hence decides to make a

detour by turning. The decision the robot makes about the
detour is long before the robot actually faces the moving hu-
mans and where a local obstacle avoidance method would
decide to make a detour.

6.2.2 Avoiding Obstacles by Following a Replanned Path

In this experiment we show that the robot can decide to fol-
low a completely different path from the one it would follow
in a static environment in order to avoid humans moving. It
is obvious from the images shown in Fig. 10, that the optimal
path to reach the goal position if the robot was operating in a
static environment it would be to follow a straight trajectory.
In our experiment, a human was moving to block this static
optimal path and the robot decided to follow a completely
different path, i.e. follow a trajectory that goes behind the
building’s column to reach the goal position.

6.2.3 Avoiding Obstacles by Increasing the Robot’s Speed

In the experiment shown in Fig. 11 the robot increases its
speed to bypass the human’s movement in order to reach
its goal position without the need of making a detour. The
human’s movement is perceived by the robot from the be-
ginning and hence it obtains the long-term prediction early
enough to decide to increase its speed to bypass the human’s
predicted motion trajectory. When the robot has passed the
human’s motion trajectory its decreases its speed to normal
to continue its movement.
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Fig. 10 Deciding to follow a completely different path. The robot has
to follow a simple straight path to reach its goal position that is the
starting point of movement of the person present in the environment.

However, the robot detects early enough that the person moves towards
its and decides to change its path to the goal by going around the build-
ing’s column

Fig. 11 Avoiding obstacles by increasing the robot’s speed. The robot has to reach the stairs by following a straight path. It detects that a person
is coming towards it and decides to increase its speed since it cannot perform a detour or change its path to the goal

6.2.4 Avoiding Obstacles by Decreasing the Robot’s Speed

In the experiment shown in Fig. 12 the robot cannot perceive
the movement of both obstacles all the time. The person’s
movement denoted in the figure with the yellow square is
occluded at the beginning and the robot can see it only after
it has passed the building’s column. However, at that point
the robot cannot increase its speed to bypass this person or
make a detour since there not enough space at that point.

Hence, the robot decides to decrease its speed until the per-
son blocking its way to the goal has passed away. After this
point the robot reverts to its normal speed and continues its
movement until it has reached its goal position.

7 Comparative Results

To further evaluate the appropriateness of the proposed ap-
proach a set of comparative experiments have been per-



Int J Soc Robot (2010) 2: 79–94 91

Fig. 12 Avoiding obstacles by decreasing the robot’s speed. The robot
has to follow a straight path to reach a distant goal. There is a person
moving in parallel with the robot that wants to reach the stairs. Another
person’s movement that was initially blocked by the building columns

is detected that it will block its way. The robot decides to decrease its
speed to allow the second person to continue its movement since it
cannot perform any detours

formed. With these experiments it is aimed to provide quan-
titative measures of how well the proposed approach per-
forms when it is applied in dynamic environments where
the robot’s movement is obstructed by humans.

The experiments were performed in the simulated envi-
ronment of the FORTH main entrance hall. The robot was
set to reach various goal points and each goal point was
reached in the environment in the case where it is static,
i.e. there is no human movement, and in the case where it
is dynamic.

In the case of operating in a dynamic environment, the
same experiment was performed by having from one up
to five humans moving within the goal area the robot has
to reach. Furthermore, in the case of having four and five
humans moving within the environment, experiments were
setup such us that all humans move in the goal area that the
robot approaches and they were also performed with a setup
where humans were moving within the goal area and also
within the area that the robot would perform manoeuvres to
avoid humans. In Fig. 13 an example is shown of the human
motion areas defined for the comparative experiments per-
formed. In this figure a sample configuration for a start and
a goal point is shown along with a shaded area that denotes
the area within the robot would choose to move to reach the
goal point in a static environment. Hence, in the performed
experiments humans are set up to move within this shaded
area so that the robot would have to employ obstacle avoid-
ance techniques. In the case of the experiments where there
are four or five humans moving in the environment there
have been used two setups. In one of them all humans move
within the shaded area and in the other setup humans move

Fig. 13 An example of how the human motion areas are defined for
the comparative experiments performed

also outside this area. The second setup enables us to further
evaluate the performance of the proposed approach since al-
ternatives routes to a goal point will be also obstructed by
human motion. In addition, the dynamic environment ex-
periments were performed with and without the use of the
prediction module. The experiments were performed using
50 different configurations of start and goal points of the ro-
bot.

The time required to execute the path obtained in the case
where the environment is static is taken as the optimal time
required to perform each experiment. This time is utilized
as a reference time to compare against the time required to
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reach the goal point in all other types of experiments. Thus,
we assume that the desirable behavior of the proposed ap-
proach is to be able to reach the goal point in a time that is
as close as possible to the time the robot has taken when it
operated in a static environment. This measure provides us
with an insight of how efficiently and effectively the robot
can avoid moving obstacles.

In Table 1, the outcome of the performed experiments is
presented. In this table, a number that ranges from zero to
one has been evaluated for each type of experiment, that de-
notes how close the performance of the proposed approach
was to the optimal one, i.e. when the robot performed the ex-
periments in a static environment. Since all the experiments
were performed in a simulated environment the time taken
to complete a motion path is actually the number of time
steps that have been executed. The overall performance for
each type of experiment has been evaluated as the average
of the performance for each of the 50 distinct configurations
used, as:

Ci =
50∑

k=1

ci,k/50,

where Ci is the overall performance of each type of exper-
iment i as shown in Table 1 and ci is the performance of
each type of experiment i when executing a specific config-
uration k, that is evaluated as:

ci,k = no. of time steps in static environment at config. k

no. of time steps in experiment i at config. k
.

As it can be observed in Table 1, the proposed approach
when utilized with motion prediction of the human move-
ment is superior to that when used without prediction. Fur-
thermore, as the number of humans increases the difference
in performance of the proposed approach with prediction
and without prediction is more apparent. This is due to the
fact that when prediction is available the robot can decide
to follow a completely different path that is free instead of
getting close to humans and making manoeuvres to avoid
them, where as the number of humans increases it is more
difficult to perform such manoeuvres. This becomes clear
when the performance of the proposed approach is observed
in the case of the experiments performed with four or five
humans and the effect of having them moving in one area
or two. When the proposed approach is utilized with pre-
diction it can be seen that the performance is not affected
dramatically since the robot can decide early enough to fol-
low a path that will not get congested. On the other hand,
when there is no prediction utilized the robot has to avoid
many humans and in many cases it does not have the space
to perform appropriate manoeuvres. Consequently, the per-
formance is greatly affected when all humans move within

Table 1 Overall performance of the proposed approach for each type
of experiment performed

Experi- No. of With Without Human
ment humans prediction prediction areas

dyn1 1 0.947 0.938 1

dyn2 2 0.922 0.873 1

dyn3 3 0.859 0.786 1

dyn4 4 0.795 0.691 1 or 2

dyn4 4 0.823 0.584 1

dyn4 4 0.767 0.798 2

dyn5 5 0.788 0.609 1 or 2

dyn5 5 0.818 0.590 1

dyn5 5 0.758 0.628 2

the same area. The performance in the case of the experi-
ments performed without prediction and with humans mov-
ing within two areas is actually equivalent to that of the ex-
periments dyn2 and dyn3 since the robot does not change
its path to the goal. Finally, overall the performance of the
proposed approach with prediction utilized remains good as
the number of humans increases and the deviation of the op-
timal time required when operating in a static environment
remains small. As a result, the proposed predictive naviga-
tion approach has shown a stable performance as the number
of humans present in the environment increases and is able
to produce paths to reach a goal point that are not too far
in time measures of the corresponding paths that the robot
would execute in a static environment.

These results provide a good insight of how the proposed
approach performs since there can be no direct comparison
with other human motion prediction and obstacle avoidance
methodologies.

8 Conclusions

In this paper, we have proposed a novel predictive approach
to the autonomous robot navigation problem. The proposed
approach is based on a Partially Observed Markov Decision
Process (POMDP), that is the navigation problem is treated
in a probabilistic manner. Furthermore, the POMDP model
is utilized as a unified model for navigation that does not
require any other external modules to perform the tasks of
localization, planning and obstacle avoidance.

Probabilistic planning is performed under the predictive
navigation framework where future motion prediction is em-
ployed for effective obstacle avoidance. Motion prediction
refers to the estimation of the final destination of a human’s
or an other object’s motion trajectory. This kind of predic-
tion provides information that is utilized for effective obsta-
cle avoidance since the robot is able to plan in awareness of
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predicted changes in the environment. The predictive nav-
igation framework provides the robot the option to choose
the suitable behavior among the following four for obstacle
avoidance:

– execute a detour
– change completely the planned path to the goal position
– increase its speed to bypass the obstacles
– decrease its speed to let the obstacles move away.

The proposed approach is capable of performing obsta-
cle avoidance in a unique manner as compared to standard
methods that perform manoeuvres to avoid obstacles locally
only when the robot gets close to them. The performance of
the predictive navigation approach has been experimentally
validated and the results have shown that it can provide opti-
mal paths that are affected the least possible by other moving
obstacle’s movement.
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