
Time Series Prediction

Using

Evolving Polynomial Neural Networks

A dissertation submitted to the

University of Manchester Institute of Science and Technology

for the degree of MSc

1999

Amalia Foka

Control Systems Centre

Department of Electrical Engineering & Electronics

i

DECLARATION

No portion of the work referred to in this dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or other institution of learning.

ii

ABSTRACT

Real world problems are described by non-linear and chaotic processes which

makes them hard to model and predict. The aim of this dissertation is to determine

the structure and weights of a polynomial neural network, using evolutionary

computing methods, and apply it to the non-linear time series prediction problem.

This dissertation first develops a general framework of evolutionary computing

methods. Genetic Algorithms, Niched Genetic Algorithms and Evolutionary

Algorithms are introduced and their applicability to neural networks optimisation

is examined.

Following, the problem of time series prediction is formulated. The time series

prediction problem is formulated as a system identification problem, where the

input to the system is the past values of a time series, and its desired output is the

future values of a time series. Then, the Group Method of Data Handling

(GMDH) algorithms are examined in detail. These algorithms use simple partial

descriptions, usually polynomials, to gradually build complex models. The hybrid

method of GMDH and GAs, Genetics-Based Self-Organising Network (GBSON),

is also examined.

The method implemented for the time series prediction problem is based on the

GBSON method. It uses a niched generic algorithm to determine the partial

descriptions of the final model, as well as the structure of the neural network used

to model the time series to be predicted. Finally, the results obtained with this

method are compared with the results obtained by the GMDH algorithm.

iii

ACKNOWLEDMENTS

I would like to express my sincere gratitude to my supervisor Mr. P. Liatsis, for

his interest, help and invaluable guidance given throughout the work for this

project.

I would like to thank all my friends for being there for me and making Manchester

a nice place to live in. Also, I would like to thank Thodoros and Anthoula for

using their laptop to run the simulations that enabled me to save invaluable time.

This dissertation is dedicated to my parents, Fotis Fokas and Lambrini Foka, for

believing in me and making it possible for me to get here. This dissertation is also

dedicated to my sister, Elpiniki, and my brother, Chrysanthos, for contributing in

their own way to support my studies at UMIST.

iv

CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Neural Networks 1

1.2 Evolutionary Computing 3

1.3 Dissertation Aims and Objectives 4

1.4 Dissertation Organisation 5

CHAPTER 2 EVOLUTIONARY COMPUTING 7

TECHNIQUES & ALGORITHMS

2.1 Introduction 7

2.2 Genetic Algorithms 7

2.2.1 Working principles 8

2.2.2 Operators 9

 2.2.2.1 Reproduction 9

 2.2.2.2 Crossover 11

 2.2.2.3 Mutation 13

2.2.3 Schemata 14

2.2.4 A simple genetic algorithm 16

2.2.5 GA-based methods for neural networks optimisation 18

 2.2.5.1 GA-simplex operator and granularity encoding 18

 2.2.5.2 Population-Based Incremental Learning 19

 2.2.5.3 GA / Fuzzy approach 20

 2.2.5.4 Hybrid of GA and Back Propagation (BP) 21

2.3 Niched Genetic Algorithms 22

2.3.1 Fitness Sharing 22

 2.3.1.1 Clustering 25

v

 2.3.1.2 Dynamic Niche Sharing 25

 2.3.1.3 Fitness Scaling 26

 2.3.1.4 Niched Pareto Genetic Algorithm 26

 2.3.1.5 Co-evolutionary Shared Niching 26

2.3.2 Crowding 27

 2.3.2.1 Deterministic Crowding 27

 2.3.2.2 Probabilistic Crowding 28

 2.3.2.3 Restricted Tournament Selection 28

2.3.3 Restricted Competition Selection 28

2.3.4 Clearing 29

2.4 Evolutionary Algorithms 29

2.4.1 Working principles 29

 2.4.1.1 Crossover 30

 2.4.1.2 Mutation 31

 2.4.1.3 Selection 32

2.5 EA-based methods for neural networks optimisation 33

2.5.1 EPNet 33

2.5.2 Co-Evolutionary Learning System (CELS) 36

2.5.3 Symbiotic Adaptive Neuro-Evolution (SANE) 37

2.5.4 Hybrid of EA and Single Stochastic Search 39

2.5.5 Multi-path Network Architecture 40

2.6 Summary 40

CHAPTER 3 PREDICTION OF TIME SERIES 41

SIGNALS

3.1 Introduction 41

3.2 Time Series Signals 41

3.3 The Procedure of Time Series Signals Prediction 43

 3.3.1 Models 45

 3.3.1.1 Linear Models 45

 3.3.1.1.1 Autoregressive (AR) 45

vi

 3.3.1.1.2 Moving Average (MA) 47

 3.3.1.1.3 Mixed models of AR & MA 47

 3.3.1.1.4 Integrated ARMA models (ARIMA) 48

 3.3.1.1.5 Seasonal ARMA Models (SARMA) 49

 3.3.1.1.6 Output Error (OE) 49

 3.3.1.1.7 Box-Jenkins (BJ) 50

 3.3.1.1.8 General family of model structures 50

 3.3.1.2 Non-linear Models 51

 3.3.1.2.1 Volterra Series Expansions 51

 3.3.1.2.2 Wiener and Hammerstein Models 52

 3.3.1.2.3 Bilinear Model 52

 3.3.1.2.4 Threshold Autoregressive Model (TAR) 53

 3.3.1.2.5 Exponential Autoregressive Model (EAR) 53

 3.3.2 Measuring Prediction Accuracy 54

 3.3.2.1 Mean Absolute Deviation (MAD) 54

 3.3.2.2 Mean Square Error (MSE) & Root Mean Square Error 54

 (RMSE)

 3.3.2.3 Mean Absolute Percent Error (MAPE) 55

 3.3.2.4 Pearson's Coefficient of Correlation (r) 55

 3.3.2.5 Theil's Inequality Coefficient (U) 56

 3.3.2.6 Theil's Decomposition of MSE 57

 3.3.3 Model Structure Selection 57

 3.3.4 Model Validation 58

3.4 Application of Neural Networks in Time Series Prediction 59

 3.4.1 Multi-layer Perceptron (MLP) 59

 3.4.2 Radial Basis Function Networks (RBF) 60

 3.4.3 Sigma-pi and Pi-sigma Networks 62

 3.4.4 The Rigde Polynomial network 63

3.4 Group Method of Data Handling (GMDH) 64

 3.4.1 Combinatorial GMDH algorithm (COMBI) 65

 3.4.2 Multi-layered Iterative GMDH algorithm (MIA) 68

 3.4.3 Objective Systems Analysis Algorithm (OSA) 69

 3.4.4 Analogues Complexing Algorithm 70

 3.4.5 Objective Computer Clusterisation (OCC) Algorithm 71

vii

 3.4.6 Probabilistic Algorithm based on the Multi-layered Theory of 72

 Statistical Decisions (MTSD)

3.5 Twice Multi-layered Neural Nets (TMNN) 72

3.6 Genetics-Based Self-Organising Network (GBSON) 73

3.7 Summary 75

CHAPTER 4 RESULTS 76

4.1 Introduction 76

4.2 Implementation 76

 4.2.1 Representation 77

 4.2.2 Fitness Evaluation 78

 4.2.3 Selection 78

 4.2.4 Crossover & Mutation 79

 4.2.5 Elitism 80

4.3 Simulation results 80

 4.3.1 Sunspot Series 80

 4.3.2 Lorentz Attractor 84

 4.3.3 Exchange Rates 87

4.4 Comparison Of Results With The GMDH Algorithm 94

 4.4.1 Sunspot Series 94

 4.4.2 Lorenz Attractor 97

 4.4.3 Exchange Rates 100

4.5 Summary 108

CHAPTER 5 CONCLUSIONS AND FURTHER WORK 109

5.1 Conclusions 109

5.2 Further Work 110

REFERENCES 112

 Chapter 1 - Introduction

1

CHAPTER 1

INTRODUCTION

1.1 Neural Networks

Neural networks [7] attempt to simulate the structure and functions of the brain

and the nervous system of human beings. They are massively parallel networks of

simple processors called artificial neurons. The artificial neurons are

interconnected, and each connection is weighted. The weights of the connections

store the knowledge of the network.

Neural networks are widely used in many application areas because of their

advantages. They are massively parallel and hence they can have high

computation rates. Their topology and weights are adaptive; therefore they are

able to learn, which makes neural networks well suited for problem solving like

prediction, system identification, optimisation, classification and vision [71]. They

can effectively model complex non-linear mappings and a broad class of problems

because of their non-parametric nature. Another important feature of neural

networks is their intrinsic fault tolerance. Unlike Von Neumann architectures even

if some neurons fail, the network can perform well because knowledge is

distributed across all the elements of the network.

Neural networks can be classified into a number of categories according to the

type of connections between the neurons. In feedforward networks, connections

between neurons are forward, going from the input layer to the output layer. In

recurrent (or feedback) networks, there are feedback connections between

different layers of the network. Neural networks can also be classified according

to the order of the input send to neurons. First order networks send weighted

 Chapter 1 - Introduction

2

sums of inputs through the transfer functions. Higher order / polynomial networks

send weighted sums of products or functions of inputs through the transfer

functions.

. . .

. . .

. . .

. . .

. . .

.

f(.)

�

f(.)

�

x3x2
x1

x1x2

x1x3

x2x3 x1x2x3 x

sin(� x) sin(2� x)

cos(� x)
cos(2 � x)

To find the optimal neural network structure for a solution to a particular problem,

training algorithms have to be used. Training algorithms can be divided into two

main categories: supervised and unsupervised. In supervised learning, a teacher is

required that defines the desired output vector for each input vector. In

unsupervised learning, the units are trained to discover statistically salient features

of the inputs and learn to respond to clusters of patterns in the inputs.

input
units

hidden
 units

output
units

Figure 1.1 Feedforward neural network. Figure 1.2 Recurrent neural network.

f(.)

�

x1 x2 x3

Figure 1.4 Higher order neural networks.Figure 1.3 First order neural network.

 Chapter 1 - Introduction

3

1.2 Evolutionary Computing

Evolutionary computing methods try to mimic some of the processes observed in

natural evolution. They are based on the Darwinian principle of natural evolution

where the fittest survives.

Darwinian evolution [23] is a robust search and optimisation mechanism.

Evolutionary computing methods can be applied to problems where heuristic

solutions are not available or lead to unsatisfactory results. As a result, they may

be used as optimisation algorithms for almost any purpose.

Evolutionary computing methods operate within a population of individuals,

which are initially randomly selected. The individuals of a population represent

potential solutions to a specific problem. The initial population evolves towards

successively better solutions by the use of the processes of reproduction, selection

and mutation. The fitness value of an individual gives a measure of its

performance on the problem to be solved.

Evolutionary computing methods are currently divided into three main categories:

Genetic Algorithms, Evolutionary Algorithms and Genetic Programming. There is

a very thin line between Genetic Algorithms [32] and Evolutionary Computing

[65], but because the original Genetic Algorithm introduced used only binary

encoding of potential solutions, the classification of an algorithm is based on that.

Thus, algorithms that use binary encoding are classified as Genetic Algorithms

and those that use real valued vectors are classified as Evolutionary Computing

algorithms. Genetic Programming [23] is a methodology for automatically

generating computer programs.

 Chapter 1 - Introduction

4

1.3 Dissertation Aims and Objectives

The aim of this dissertation is to investigate the use of evolutionary computing

methods in determining the topology and weights of polynomial neural networks,

applied to the time series prediction problem.

Traditional training algorithms for neural networks, such as the backpropagation

algorithm, are based on gradient descent. These algorithms follow the gradient of

an error function to modify the network parameters. This method can often result

to a suboptimal solution because these algorithms may stuck in local minima. The

search for an optimal set of weights and topology of neural networks is a

complex, combinatorial optimisation problem and evolutionary computing

methods have been proved to outperform traditional training methods [2], [10],

[11], [13], [14], [24], [49], [75].

Polynomial neural networks [14] are feedforward networks that use higher order

correlations of their input components. This makes them attractive for use in

system identification and modelling since they can perform non-linear mappings

with only a single layer of units.

Polynomial neural networks architectures structured using evolutionary

computing methods will be applied to the time series prediction problem.

Traditional approaches to prediction were based either on finding a law

underlying the given dynamic process or phenomenon or on discovering some

strong empirical regularities in the observation of the time series. For the first

case, if a law can be discovered and analytically described, e.g. by a set of

differential equations, then by solving them we can predict the future if the initial

conditions are completely known and satisfied. The problem with this approach is

that usually information about dynamic processes is only partial and incomplete.

In the second case, if there is a time series consisting of samples of a periodic

process, it can be modelled by the superposition of sinusoids generated by a set of

second order differential equations. In real-world problems though, regularities

such as periodicity are masked by noise and some phenomena are described by

 Chapter 1 - Introduction

5

chaotic time series in which the data seem random without apparent periodicities

[14].

1.4 Dissertation Organisation

Chapter 2 deals with the basic concepts of evolutionary computing methods. It

covers the topics of Genetic Algorithms, Niched Genetic Algorithms and

Evolutionary Algorithms, and their basic operators. An overview of evolutionary

computing methods in neural networks optimisation is also given.

Chapter 3 gives a definition of time series signals and some of their properties.

The prediction of time series signals is formulated, and the procedure of

prediction is presented. The most commonly used linear and non-linear models for

time series are also summarised. Then, the Group Method of Data Handling

(GMDH) is presented, along with its most common algorithms. Finally, the

Genetics-Based Self-Organising Network (GBSON) method for time series

prediction is outlined.

Chapter 4 presents how the time series prediction problem was implemented and

the results of the simulations conducted on different time series. Following, the

results of the simulations are compared with the results obtained using the GMDH

algorithm.

Chapter 5 gives the conclusions of this dissertation and recommendations for

future work in this area of research.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

6

CHAPTER 2

EVOLUTIONARY COMPUTING TECHNIQUES

& ALGORITHMS

2.1 Introduction

In this chapter, the various evolutionary computing techniques and algorithms will

be introduced. First, the working principles of the Genetic Algorithm (GA) are

outlined by presenting its operators and various strategies. Following, the Niched

GA is presented and finally the Evolutionary Algorithm (EA) operators and

strategies are reviewed.

2.2 Genetic Algorithms

Genetic algorithms are stochastic algorithms whose search methods are based on

the mechanics of natural selection and natural genetics. John Holland [32]

originally developed them. The aim of Holland’s work was to develop a theory of

adaptive systems that retain the mechanisms of natural systems. The features of

natural systems of self-repair, self-guidance and reproduction intrigued early

researchers in this field to be applied in problem solving.

Problem solving can be thought of as a search through a space of potential

solutions. The desired output of such a search is the best solution. Thus, this task

can be viewed as an optimisation process. Traditional optimisation methods such

as hill climbing have been used in many applications but they require the

existence of the derivative of an objective function and continuity over its domain.

In real world problems, it is almost impossible to meet these requirements.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

7

Random search optimisation schemes have also been used, but they lack

efficiency. These conventional optimisation schemes are not robust for a broad

field of problems. Genetic algorithms try to overcome the problem of robustness

by being a directed search process using random choice as a tool.

2.2.1 Working principles

In a genetic algorithm, the first step is to define and code the problem to be

solved. A typical single-variable optimisation problem can be outlined as

Maximise f(x) = x2

Variable bound: maxmin xxx ≤≤ .

The problem is defined with the use of an objective function that indicates the

fitness of any potential solution, and for the above problem is x2. The decision

variables are coded as a finite length string called chromosome, a...aaA ll 11−= ,

where l is the string length. The alphabet of a coding defines the possible values

of the bit or gene ai, i.e. in a binary coding the alphabet is {0, 1}. For example, if

four-bit binary strings are used to code the variable x, the string (0 0 0 0) is

decoded to the value xmin, the string (1 1 1 1) is decoded to the value xmax, and any

other string is decoded to a value in the range (xmin, xmax), uniquely. In natural

terminology, the values of the alphabet are called alleles and the position of the

gene, indicated by i, is called locus. The choice of the string length l and the

alphabet determine the accuracy of the solution and the computation time required

to solve the problem [17]. The principle of minimal alphabets defines that the

smallest alphabet that permits a natural expression of the problem should be

selected.

Genetic Algorithms begin with a population of chromosomes created randomly.

Following, the initial population is evaluated. Three main operators -reproduction,

crossover and mutation- are used to evolve the initial population towards better

solutions. The population is evaluated, and if the termination criteria are not met,

the three main operators are applied again. One cycle of these operators and the

evaluation procedure is known as a generation in GA terminology.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

8

begin
Choose a coding to represent variables;
Initialise population;
Evaluate population;
repeat

Reproduction;
Crossover;
Mutation;
Evaluate population;

until (termination criteria);
end.

Figure 2.1 Pseudocode for a simple genetic algorithm.

2.2.2 Operators

2.2.2.1 Reproduction

The reproduction operator is based on the Darwinian nature selection procedure,

where the fittest survives. There exists a number of reproduction operators in GA

literature [3], [28], [53], [55], but the essential idea in all reproduction operators is

that above average chromosomes are picked from the current population and

multiple copies of them are inserted in the mating pool.

The most common way of implementing the reproduction operator is by using

roulette wheel selection. Each chromosome in the population is assigned a

probability of reproduction, so that its likelihood of being selected is proportional

to its fitness relative to the other chromosomes fitness values in the population.

For a chromosome i with fitness fi, in a population of n individuals, its probability

of being selected for reproduction, pi, is given by:

∑
=

=
n

i

i

i
i

f

f
p

1

.

The roulette wheel has a slot for each individual, sized according to its probability

of being selected for reproduction. To create a new population, the roulette wheel

is spun n times. The new population will have more copies of the individuals with

high fitness values and less copies of the individuals with small fitness values.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

9

Another proposed implementation of the roulette wheel selection operator is with

Stochastic Universal Sampling (SUS) [55]. SUS spins the wheel once but with n

equally spaced pointers that are used to select the n parents.

The proportional selection methods described above are likely to cause premature

convergence to a local optimum solution [53], [55]. This is due to the existence of

super individuals whose fitness values are above average and have a large number

of offspring in next generations. This prevents other individuals from contributing

any offspring in next generations with the result of not exploring other regions of

the search space. To address this problem, the method of rank selection [53], [55]

has been proposed. In this method, the individuals in the population are ranked

according to their fitness values and the selection is performed according to their

rank, rather on their fitness value. A linear ranking selection method proposed by

Baker [4] works by choosing the expected value max of the best individual in the

population (rank = n), and setting the expected value min as the expected value of

the worst individual (rank = 1). Then, the expected value of each individual i is

given by

n
irank

minmaxminiE
1)(

)()(
−−+= .

This function takes a linear curve through max such that the area under the curve

equals the population size n.

Another common reproduction method is the tournament selection [27]. This

method selects randomly some number k of individuals, and reproduces the best

one from this set of k elements into the next generation. As the number k of

Figure 2.2 An example of the roulette wheel.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

10

individuals selected to compete increases, the selective pressure of this procedure

increases.

Boltzmann tournament selection (BTS) [29] is motivated by the original

tournament selection scheme and simulated annealing. BTS operates in such a

way that samples over time become Boltzmann distributed. In this selection

scheme, competition is performed between three members of the population. The

first member i, is selected randomly and the second and third members, j and k,

are selected in such a way that they differ by a constant
�

 from the first member.

Members j and k compete first, with member j probabilistically winning according

to the function

T
jfkf

e
)()(

1

1
−

+

.

Then, the winner competes with member i. Member i wins with probability

T
winnerfif

e
)()(

1

1
−

+

,

where T is BTS's current temperature and)(⋅f is the fitness function.

In evolving rule-based systems, such as classifier systems, the method of steady-

state selection [69] is used. In this method, only a few individuals are replaced in

each generation. The fittest individual's offspring of the current population

replaces the least fit individuals, to form the new population in the next

generation. The fraction of new individuals at each generation is referred as the

generation gap.

2.2.2.2 Crossover

The main purpose of the crossover operator is to search the parameter space. The

search needs to be performed in a way that the information stored in the parent

strings is maximally preserved, because these parent strings are instances of good

strings selected using the reproduction operator. Hence, the idea behind the

crossover operator is to combine useful segments of different parents to form an

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

11

offspring that benefits from advantageous bit combinations of both parents. The

two parents are selected randomly from the population with probability pc. The

probability that an individual will be a parent for crossover, pc, is usually between

0.6 and 0.95.

The simplest crossover operator is the one proposed by Holland, the one-point

crossover. An integer position k along the chromosome is randomly selected,

where 11 −≤≤ lk and l is the length of the chromosome. Exchanging all bits on

the right side of the crossing point k, two new chromosomes are created, called

offspring. So, if the two parent chromosomes are

A = 0 0 0 | 0 0

B = 1 1 1 | 1 1

and | denotes the randomly selected point k, the resulting offspring will be

A′ = 0 0 0 1 1

B′ = 1 1 1 0 0

The one-point crossover suffers from its positional bias, i.e. a strong dependence

of the exchange probability on the bit positions, since as bit indices increase

towards l, their exchange probability approaches one. Therefore, the search in the

parameter space is not extensive, but the maximum information is preserved from

parents to offspring. It has also been noted that the one-point crossover treats

some loci preferentially, resulting to segments exchanged between the two parents

always containing the endpoints of the strings.

To reduce positional bias and the endpoint effect, the multi-point crossover [18]

was introduced. Multiple points are randomly chosen along the chromosome and

each second segment between subsequent crossover points is exchanged. The

most common multi-point crossover operator is with two points, shown

schematically in Figure 2.3.

A further generalisation to the multi-point crossover is the uniform crossover. In

uniform crossover, an exchange occurs at each bit position with probability p

(typically 8.05.0 ≤≤ p). In contrast to the one-point crossover, in the uniform

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

12

crossover the search through the parameter space is very extensive but minimum

information is preserved between parents and offspring.

 Figure 2.3 Two-point crossover.

Other proposed crossover operators are the segmented crossover, shuffle

crossover and the punctuated crossover. The segmented crossover works like the

multi-point crossover except that the number of the crossover points is replaced

by a segment switch rate. This switch rate specifies the probability that a segment

will end at any point in the string.

Shuffle crossover can be applied in conjunction with any other crossover operator.

It first shuffles the bit positions of the parents randomly, then the strings are

crossed, and finally unshuffles the strings. This operator has the ability of

reducing the positional bias of standard crossover operators.

The punctuated crossover works also like the multi-point crossover but here the

number and positions of the crossover points are self-adaptive. A number of bits

are added to the chromosome that represent the number and position of the

crossover points and thus the operator itself is subject to crossover and mutation.

More details about crossover schemes can be found in [3], [12], [15], [28], [53],

[55].

2.2.2.3 Mutation

The mutation operator in genetic algorithms is a secondary operator that

occasionally changes single bits of the chromosomes by inverting them. Its

parents offspring

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

13

purpose is to keep diversity in the population. After the operators of reproduction

and crossover have been applied, it is possible to lose genetic material that might

be useful, i.e. a certain value at a certain bit position. The mutation operator

protects against irrecoverable loss of useful genetic material.

The mutation probability per bit, pm, is small and usually lies within the range

[0.001, 0.01]. If there is a chromosome of length 10 and pm is 0.1, then one bit of

the chromosome will be mutated. So, if A = 1 0 0 0 1 1 0 0 1 0 and the bit to be

mutated is the first, then after the mutation A′= 1 0 0 0 1 1 0 0 1 1.

More details about mutation schemes can be found in [3], [28], [53], [55].

2.2.3 Schemata

The theoretical foundations of genetic algorithms rely on a binary string

representation of solutions and the schemata [28], [53]. A schema is a similarity

template describing a subset of strings with similarities at certain bit positions.

To build a schema, a don’t care symbol is introduced denoted by *. A string with

fixed and variable symbols defines a schema. For example the schema {01**},

defined over the binary alphabet and the don’t care symbol, describes the subset

{0100, 0101, 0110, 0111} and the schema {011*} describes the subset {0110,

0111}. The schema {****} represents all strings of length 4.

It can be seen that a schema describes a number of strings. The number of strings

a schema represents is given by 2r, where r is the number of don't care symbols,

and each string of length l is matched by 2l schemata. The order of a schema,

denoted by o(H), is defined as the number of the fixed positions in the schema and

defines the speciality of a schema. The order of the schemata {010*} and {***1}

is 1 and 3, respectively. The defining length of a schema, denoted by � (H), is the

distance between the first and the last fixed string positions and defines the

compactness of information contained in a schema. The defining length of the

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

14

schemata {0**1} and {*0**} is � (�) = 4 - 1 = 3 and � (�) = 2 - 2 = 0,

respectively.

The use of schemata makes the search over a space of potential solutions directed.

That is because when there is information available on a particular chromosome’s

fitness value, e.g. {1100}, there is also partial information about the schemata it

can form, i.e. {1***}, {11**}, {1**0}, {***0} and so on. This characteristic is

termed implicit parallelism, as it is through a single sample, information is gained

with respect to many schemata.

The information gained from schemata can be useful in the formation of new

generations after the operators of reproduction, crossover and mutation are

applied. The reproduction operator simply ensures that schemata with high fitness

have an increased number of samples in the next generation. If the number of

strings in a population matched by a schema H at time t is denoted by m(H, t), and

its probability of being selected in the next generation is

∑
=

)(
)(
if

Hf
pH ,

the expected number of strings matched by H in the next generation will be

∑⋅⋅=+)()(),()1,(ifHfntHmtHm .

By denoting the average fitness of the population as niff ∑=)(, the above

equation becomes

fHftHmtHm)(),()1,(⋅=+ .

From the above equation, it can be seen that schemata with above average fitness

values will have more copies in the next generation, whereas schemata with below

average fitness values will have fewer copies in the next generation.

The crossover operator has a different effect on schemata depending on their

defining length. Schemata with long defining length are likely to be disrupted by

the crossover operator, and on the contrary schemata with short defining length

are most likely to remain unchanged. The probabilities of a schema to remain

unchanged, pu(H), and to be disrupted, pd(H), are defined as [53]

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

15

1
)(

1)(
−

−=
l

H
Hpu

δ
 and

1
)(

)(
−

=
l

H
Hpd

δ
.

When the mutation operator is applied with a low probability, it is unlikely to

disrupt a schema.

These observations give rise to the schema theorem and the building block

hypothesis.

Schema Theorem [28]: Short, low-order, above-average schemata receive

exponentially increasing trials in subsequent generations of a genetic algorithm.

Building Block Hypothesis [28]: A genetic algorithm seeks near-optimal

performance through the juxtaposition of short, low-order, high performance

schemata, called building blocks.

2.2.4 A simple genetic algorithm

The problem of maximising the function xxf 2)(= , where x varies between 0 and

31, will be considered. To code this problem a binary string of length 5 is

sufficient to represent the values from 0 to 31.

First, the initial population has to be generated. For a population of size 4, an

unbiased coin is tossed 20 times, where heads equals 1 and tails equals 0. Each

individual in the population has to be decoded and its fitness has to be evaluated.

The initial population generated is shown in Table 2.1. In this example, the

decoding is straightforward and for the third string its value is 0≈20+ 0≈21+

0≈22+ 0≈23+ 1≈24 = 16 and its fitness value is f(x)=162=256.

The iterative process of the genetic algorithm starts with reproduction that is

performed with the roulette wheel selection. The roulette wheel is spun four times

to give the four new members of the population. The probability of each

individual to be selected and its expected count of times to be reproduced are

shown in Table 2.1. The actual count from the roulette wheel is also shown in

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

16

Table 2.1. The result from the roulette wheel is the expected one where

individuals with high fitness have more copies in the new population and

individuals with low fitness die off.

String

No.

Initial

Population

x value f(x)=x2 Pselect

∑ f
fi

Expected

Count
f
fi

Actual Count

1 0 1 0 1 1 11 121 0.29 1.16 1

2 0 1 0 1 0 10 100 0.24 0.96 1

3 1 0 0 0 0 16 256 0.62 2.46 2

4 0 0 0 1 1 3 9 0.02 0.09 0

Sum 414 1.00 4.00 4.0

Average 104 0.25 1.00 1.0

Max 256 0.62 2.46 2.0

The probability of crossover in this example is equal to 1.0, so all the members of

the new population will be parents. The couples of parents and the points of

crossover are chosen randomly. The result of crossover is shown in Table 2.2.

The probability of mutation in this example is assumed to be equal to 0.001. For

the total number of bits in the population the expected mutations are equal to

5≈4≈0.001 = 0.02, thus no mutations are expected.

The results of a single generation are shown in Table 2.2. The average fitness of

the members of the population has increased from 104 to 203 and the maximum

fitness value has also increased from 256 to 361. Iterating this process will

eventually result in a string with all ones that has maximum fitness value.

Table 2.1 The initial population generated.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

17

Mating Pool

after

Reproduction

Mate

(randomly

selected)

Crossover Site

(randomly

selected)

New Population x value f(x)=x2

0 1 0 | 1 1 3 3 0 1 0 0 0 8 64

0 1 | 0 1 0 4 2 0 1 0 0 0 8 64

1 0 0 | 0 0 1 3 1 0 0 1 1 19 361

1 0 | 0 0 0 2 2 1 0 0 1 0 18 324

Sum 813

Average 203

Max 361

Table 2.2 The population after the first generation.

2.2.5 GA-based methods for neural networks optimisation

2.2.5.1 GA-simplex operator and granularity encoding

Maniezzo [49] proposed a method for evolving the topology and weight

distribution of neural networks, based on the GA-simplex operator and granularity

encoding that allows the algorithm to evolve the length of the coding string. The

variable-length binary coding allows its minimisation through evolution, and thus

minimisation of the search space.

This representation uses the network nodes as basic functional units and encodes

all the information relevant for a node in nearby positions. The first byte of the

string specifies the granularity; the number of bits according to which the weights

of the present connections have been specified. Each of the next bytes represents a

node in the network. The first bit is the connectivity bit that is present only if a

connection exists. When a connectivity bit is present, it is followed by the binary

encoding of the relative weight.

The operators applied in this method are the standard roulette wheel selection,

single-point crossover, point mutation and the GA-simplex operator. The GA-

simplex operator works on three individuals of the population x1, x2, and x3 to

generate a new individual x4. It is implemented in four steps:

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

18

Step 1: Rank the three parents by fitness value; suppose

)()()(321 xFFxFFxFF ≥≥

Step 2: FOR each ith bit of the strings

Step 3: IF x1i = x2i, THEN x4i = x1i

Step 4: ELSE x4i = negate (x3i)

The fourth step of the operator can be applied either deterministically or with a

probability.

 1 2

 3

 4

 1 1

 -1 -1
 2 0011 1 101 1 101 1 010 1 110 1 010

 arc(1,3) arc(2,3) arc(1,4) arc(2,4) arc(3,4)

granularity bits

connectivity bits

weight encoding bits

2.2.5.2 Population-Based Incremental Learning

Population-Based Incremental Learning (PBIL) [5] is a modification of the

standard genetic algorithm. The objective of PBIL is to create a real valued

probability vector that specifies the probabilities of having '1' in each bit position

of high evaluation solutions. The probability vector can be considered as a

prototype for high evaluation vectors, for the solution space being explored.

Before the evolution of solution vectors starts, the probability vector is initialised

with the value of 0.5 to all its bit positions, so the probability of generating 0 and

1 is equal. Then, the initial population of potential solutions is generated

according to the probability vector. The population is evaluated, and the

probability vector is updated towards the best solution as

)_))0.1((,1, LRmemberbestLRyprobabilityprobabilit titi ⋅+−=+ ,

and away from the worst solution as

)__

))_0.1((,1,

LRnegativememberbest

LRnegativeyprobabilityprobabilit titi

⋅

+−=+ ,

Figure 2.4 Granularity encoding.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

19

where LR denotes the learning rate, how fast to exploit the search performed, and

negative_LR denotes the negative learning rate, how much to learn from negative

examples.

In this method, a crossover operator is not applied. Only the mutation operator is

applied to the probability vector, to prevent it from converging to extreme values

without performing an extensive search. The mutation operator is applied with

probability pm, at each point of the probability vector. Each vector position is

shifted in a random position by shiftm, that defines the amount a mutation alters

the value in the bit position. The probability vector after mutation will be

mmtiti shiftdirectionshiftyprobabilityprobabilit ⋅+−=+)0.1(,1, ,

where direction can take the value of 0 or 1.

The new population of potential solutions is formed according to the altered

probability vector. The mechanism of elitist selection [53] is performed before the

probability vector is altered again. During elitist selection the best member of the

previous population replaces the worst member of the current population. This

mechanism is used in case a better solution is not produced in the current

population.

2.2.5.3 GA / Fuzzy approach

Carse and Fogarty [10], [11] have proposed a genetic algorithm / fuzzy logic

based method for evolving Radial Basis Function neural networks. In their

implementation, the 2N-tuple (Ci1, Ri1,…, Cij, Rij, …, CiN, RiN) represents

potential solutions, where N is the number of inputs, and (Cij, Rij) is the centre and

width of the Gaussian radial basis function of the hidden node, for the jth input

variable.

A modified two-point crossover operator is applied, where the two crossover

points X1j and X2j are chosen as

X1j = MINj + (MAXj - MINj)≈Rd1

X2j = X1j + (MAXj - MINj)≈Rd2 .

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

20

Rd1 and Rd2 are chosen randomly in the range [0,1] with uniform probability

density. [MINj, MAXj] is the allowed range of the jth-input variable. The selection

of these points ensures that one member of the generated offspring will contain

genes that satisfy the condition
�

j, ((Cij > X1j) AND (Cij < X2j)) OR ((Cij + MAXj - MINj) < X2j)

and the other member of the offspring will contain the remaining generated genes

that do not satisfy the above condition.

The mutation operator used is the standard point mutation operator applied with

probability pm.

2.2.5.4 Hybrid of GA and Back Propagation (BP)

Fukumi and Akamatsu [25] proposed a method that combines GA with the Back

Propagation training algorithm. After a randomly initialised population of

potential solutions is generated, the networks are trained using a Back Propagation

algorithm with forgetting link of weight (BPWF). The network is trained to

achieve 100% classification accuracy. The BPWF uses as a criterion the value of

J,

∑∑ +−=
ji

ji
i

ii wodJ
,

,
2 ||)(ε ,

and the weights are updated by 	 wi,j,

))(sgn()()(,,, twtwtw jijiji εη −∆=∆ ,

where di is the desired output, oi is the actual output and
 is the forgetting factor.

The forgetting factor utilises the Deterministic Mutation operator proposed in this

method. Deterministic Mutation is used to reduce the number of 1's in

chromosomes that represent connections to a node, and thus reduce their

complexity.

The fitness value refers to the number of 1's in the chromosome, on the condition

that the classification accuracy for every sample is 100%. A small number of 1's

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

21

leads to high fitness value because it represents a small sized network. The

individuals that do not have classification accuracy of 100% are discarded.

The selection of a pair of individuals is done in a stochastic manner based on their

fitness value. The selected pairs of individuals are recombined with the crossover

operator to generate the offspring. Then the generated offspring is trained with

Back Propagation without a forgetting factor. Finally, before the procedure

described is applied to the new population, a standard point mutation operator is

applied to the generated offspring.

2.3 Niched Genetic Algorithms

Genetic Algorithms are effective at identifying and converging populations to a

single global optimum. Many real-world problems contain multiple solutions that

are optimal or near optimal. The domains of such problems require the

identification of multiple optima. In a multi-modal domain, each peak can be

thought of as a niche that can support a certain number of concepts. Niched

genetic algorithms [70] were introduced to identify the niche locations and

populate niches according to their fitness relative to the other peaks. Following,

the mechanisms introduced to implement a niched genetic algorithm will be

presented.

2.3.1 Fitness Sharing

Fitness sharing accomplishes niching by degrading the fitness value of an

individual that has highly similar members within the population. This scheme

causes population diversity pressure, which helps maintain population members at

local optima.

There is an obvious need for a similarity metric. The similarity metric can be

based on either phenotype or genotype similarity. A common genotype similarity

metric is the Hamming distance, which is the number of different bits between

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

22

two members of the population. A common phenotype similarity metric is the

Euclidean distance in the parameter space. Phenotypic sharing gives slightly

better results, due to the decreased noise in the decoded parameter space [47].

The shared fitness if ′ of a member of the population i, is defined by

i

i
i m

f
f =′ ,

where mi is the niche count calculated by summing a sharing function over all

members of the population

∑
=

=
n

j
iji dshm

1
)(,

where n is the population size, dij is the distance between i and j and sh(dij) is the

sharing function. The sharing function measures the similarity between two

population members. It returns one if there are two identical members, zero if

their distance is higher than a dissimilarity threshold and an intermediate value at

an intermediate level of dissimilarity. The most commonly used sharing functions

are of the form








<





−=

otherwise 0

 if 1)(sij
s

ij
ij

d
d

dsh σ
σ

α

,

where � s is the dissimilarity threshold referred to as the niche radius and � is a

constant parameter that regulates the shape of the sharing function. Commonly,

is set to one resulting to the triangular sharing function.

A main drawback of fitness sharing is the difficulty of setting the niche radius � s.

Deb [42] has presented a method that sets � s according to the number of peaks, q,

that are expected in the search space as

q
l

i

ls

i
l

=




∑
=

σ

02

1
,

where l is the string length. The difficulty in estimating the niche radius with this

method is that in most cases the expected number of peaks in the search space is

not known.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

23

Another approach to the problem of determining � s is to define it as a function

[40]. The niche radius function, r, is defined as

)1,0(,)0()(∈= ββ irir .

r(0) is the maximum distance in the initial population and defines the diameter of

the domain to be explored. � is constant that is determined by the equation

∑
=

=
STm

i
iruMvr

N

1))0((

1
)0(β

,

where N is the number of function evaluations, M is the upper bound of the

number of species and normally M = [population size / 4], v is a threshold value

that determines how many species will receive sufficient function evaluations for

crossing the whole space, and STm is the number of steps in the 'cooling'

procedure. The function u(x) determines the speed with which species move in the

search space to find the niche on which they are stable. For binary domains the

speed function is given by

xxu
11
3

)(= .

For fitness sharing to be effective, it has to be implemented with less biased

selection methods [64]. Widely used methods are the Stochastic Remainder

Selection (SRS) and Stochastic Universal Selection (SUS). The use of the

Tournament Selection with fitness sharing has been criticised as a naive

combination, because the detailed dynamics are chaotic and because the mean-

field performance exhibits a steady decline in the number of niches the population

can support [58]. Instead, the method of tournament selection with continuously

updated sharing was introduced [58]. In this method, tournament selection is

applied according to shared fitness values that have been continuously updated

using only the individuals actually chosen to be members of the next generation.

In addition, fitness sharing must use low reproduction operators to promote

stability of sub-populations [64]. Crossover between individuals of different

niches often leads to poor individuals. To avoid this, mating restriction schemes

have been introduced. A scheme like that [41] allows recombination between

members whose distance is less than a dissimilarity threshold.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

24

2.3.1.1 Clustering

Yin and Germay proposed that a clustering algorithm is implemented prior to

sharing, in order to divide the population into niches [60]. The population is

divided, by MacQueen's adaptive KMEAN clustering algorithm, into k clusters of

individuals that correspond to k niches. In this method the niche count is

determined as




















⋅

−=
α

max2
1

d
d

nm ic
ci ,

where nc is the number of individuals in the cluster c, � is a constant, dic is the

distance between the individual i and the centre of its niche c and dmax is a

threshold parameter. The advantage of this method is that the algorithm itself

determines the number of clusters that the initial population is divided into, hence

no a priori knowledge about the peaks is required. Two clusters are merged if the

distance between their centres is smaller than a threshold parameter dmin and when

an individual's distance from all existing cluster centres is higher than dmax, a new

cluster is formed with this individual as a member.

2.3.1.2 Dynamic Niche Sharing

The dynamic niche sharing method was developed to reduce the computational

expense of fitness sharing [54]. It is assumed that the number of peaks, q, can be

estimated and that the peaks are all at a minimum distance ��� s from each other. In

this method, first the q peaks are identified and then all individuals are classified

as either belonging to one of these dynamic niches or else belonging to the non-

peak category. An individual i is considered to be within a dynamic niche j if its

distance dij from peak j is less than � s. The niche count is now defined by





=′
 otherwise

 niche dynamic within is if

i

j
i m

jin
m ,

where mi is niche count as defined in the original fitness sharing scheme and nj is

the niche population size of the jth dynamic niche.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

25

2.3.1.3 Fitness Scaling

A method proposed to increase sharing efficiency is to use fitness scaling [64].

The fitness scaling scheme increases differentiation between optima and reduces

deception. An implementation of fitness scaling is by using power scaling of the

original fitness. Thus, the shared fitness is given by

i

i
i m

f
f

β
=′ .

The choice of the constant � determines the balance between exploration and

exploitation and hence annealing the scaling power is proposed.

2.3.1.4 Niched Pareto Genetic Algorithm

This method proposed a modification to the tournament selection scheme for use

with shared fitness [33]. Two candidates for selection are randomly picked from

the population, and selecting also randomly tdom (tournament size) individuals,

forms a comparison set. Following, each candidate is compared against each

individual in the comparison set. If one candidate is dominated by the comparison

set, and the other is not, the latter is selected for reproduction. If neither or both

are dominated by the comparison set, the candidate with the smallest niche count,

mi, is selected for reproduction.

2.3.1.5 Co-evolutionary Shared Niching

This method overcomes the problem of determining the locations and radii of

niches by utilising two populations that evolve in parallel [62]. There is a

population of businessmen and a population of customers. The locations of the

businessmen correspond to niche locations, and the locations of customers

correspond to solutions. On the customer population, the operators of selection

and recombination are applied, whereas on the businessmen population, the

operators of selection and mutation are applied.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

26

In the customer population, the shared fitness of each individuals is evaluated as

in the original fitness sharing scheme, but the niche count, mi, is now determined

without the need of a niche radius. All customers are compared to all businessmen

and each customer is assigned to the closest businessman. The businessmen-

customer counts are used as niche counts. Following generations are obtained by

applying the operators of selection and crossover.

In the businessmen population, single-bit mutation is applied to each individual.

The businessman is replaced by its offspring if there is an improvement over the

original individual and if it has distance dmin at least from the other businessmen.

If these conditions are not met the original businessman is retained and the

process is repeated for a maximum of nlimit times (nlimit ��� � . If no candidate is

found that meets the criterion, the next businessman is selected and the process is

repeated.

2.3.2 Crowding

Crowding methods insert new elements in the population by replacing similar

elements. Originally, crowding was introduced by De Jong [63]. In this method,

only a proportion of the population, specified by the generation gap (G), is chosen

to undergo crossover and mutation and dies each generation. A random sample of

CF individuals is taken from the population, where CF is the crowding factor. An

offspring replaces the most similar individual from the sample.

2.3.2.1 Deterministic Crowding

Mahfoud [47] proposed an improvisation of the standard crowding method of De

Jong, by introducing competition between children and parents of identical niche.

In this method, all population elements are grouped into n/2 pairs. Following,

these pairs are crossed and the offspring is optionally mutated. Each offspring

competes in a tournament against one of the parents that produced it. The set of

tournament that yields the closest competitions is held. Closeness is computed

according to some appropriate distance measure, preferably phenotypic distance.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

27

2.3.2.2 Probabilistic Crowding

Probabilistic crowding [51] is a variant of the deterministic crowding method

described before. If i, j are the individuals picked to compete for inclusion in the

next generation, they will compete in a probabilistic tournament. Individual i wins

with probability

)()(
)(

)(
jfif

if
ip

+
= .

There are three variants of this method where the selected individuals can undergo

either mutation or crossover or both.

2.3.2.3 Restricted Tournament Selection

In this method [64], two elements are initially selected to undergo crossover and

mutation. After recombination, a random sample of CF individuals is taken from

the population as in standard crowding. Each offspring competes with the closest

sample element and the winners are inserted in the population. This procedure is

repeated n/2 times.

2.3.3 Restricted Competition Selection

The restricted competition selection (RCS) method restricts competitions among

dissimilar individuals during selection to reach stable sub-populations [43]. In this

method, after the initial population of size n is created, the best m individuals of

this population form the elite set. The parents to undergo crossover and mutation

are selected randomly, and after the operators have been applied, the elite set is

added to the population to produce the competition set having n+m individuals.

The similar elements of the competition set, the ones that their distance is less

than the niche radius, compete and the loser's fitness is set to zero. After all

similar elements compete, the new elite set is formed and selecting the best n

elements from the competition set forms the new population. This process is

repeated for a number of generations.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

28

2.3.4 Clearing

The clearing procedure is applied after evaluating the fitness of individuals and

before applying the selection operator [59]. The individual in a niche with the best

fitness is the dominant individual. The non-dominant individuals that belong to a

niche have a distance from the dominant individual less than the clearing radius.

The clearing method preserves the fitness of the dominant individual while it

resets the fitness of all other individuals of the same niche to zero. Thus, this

method fully attributes the whole resource of a niche to a single individual, the

winner.

2.4 Evolutionary Algorithms

Evolutionary algorithms are an alternative approach to simulate evolution. They

emphasise the behavioural link between parents and offspring, rather than the

genetic link. They work in a similar way to genetic algorithms; they maintain a

population of potential solutions and make use of the selection principle of the

survival of the fittest individual. However, there are many differences between

genetic algorithms and evolutionary algorithms.

2.4.1 Working principles

Evolutionary algorithms were initially introduced as a mechanism with only one

parent represented by a real valued vector x. New individuals evolved by a

mutation operator. Mutation is applied to the parent by adding a zero mean

Gaussian random variable with a preselected standard deviation � ,

),0(1 σNxx tt +=+ .

The resulting individual is evaluated and compared to its parent, and the best

individual survives to become a parent in the next generation, while the other is

discarded. This mechanism is termed as (1+1)-ES.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

29

To incorporate the concept of populations in the (1+1)-ES method, the (� +1)-ES

was introduced. In the (� +1)-ES method, � parents recombine to generate an

offspring. The offspring is mutated as in the (1+1)-ES method and replaces the

worst parent to form the new population.

Schwefel [65] then introduced the (� � � � � ! S and (" #%$ &('*) S methods. In the (+-,.$)-

) S method, + parents are used to create $ offspring and all solutions compete for

survival, with the best + members being selected as parents in the next generation.

In the (+/#%$ &0'1) S method, + parents are again used to create $ offspring, but only the

$ offspring compete for survival. This leads to the condition of $ > + required

holding.

Although the initial evolutionary algorithm method of (1+1)-ES incorporated only

the genetic operator of mutation, the latter methods of (+-,2$ &0'3) S and (+4#%$ &('*) S

introduced the use of the operator of recombination or crossover.

In general, an evolutionary algorithm method starts by defining the problem to be

solved as finding an l-dimensional real valued vector associated with the

extremum of an objective function f: 3 l 5 3. Following, a random population of

real valued vectors is initialised and evaluated. Then, until a termination condition

is met, a repetitive process of the operators of crossover, mutation and selection is

applied.

2.4.1.1 Crossover

The crossover operators in evolutionary algorithm methods are mainly subdivided

into two categories: discrete recombination and intermediate recombination.

In discrete recombination, when two parents are selected, the offspring is

generated by randomly copying the corresponding component of one of the

parents. So, for two parents A and B the generated offspring’s C components, C
ix

will be

xorxx B
i

A
i

C
i = , for all }.,...,1{ li ∈

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

30

In intermediate recombination, the offspring’s components are obtained by

calculating the arithmetic mean of the corresponding components of both parents.

)(5.0 A
i

B
i

A
i

C
i xxxx −⋅+= , for all }.,...,1{ li ∈

A generalisation to intermediate recombination was also proposed by Schwefel.

Instead of calculating the mean of the two parent components, a weight factor 6
belonging to the interval of [0,1], is multiplied with the difference of the two

parent components.

)(A
i

B
i

A
i

C
i xxxx −⋅+= α , for all }.,...,1{ li ∈

2.4.1.2 Mutation

In evolutionary algorithm methods, the mutation operator is applied by adding to

the original vector a Gaussian random variable of zero mean and a predefined

standard deviation 7 .

),0(1 σNxx tt +=+

Another approach proposed is to evolve the standard deviation 7 , in parallel with

the potential solution vector. In this case, the solution vector comprises from both

the trial vector x of l dimensions, and the perturbation vector 7 , which provides

instructions on how to mutate x. Thus, the new solution vector (xt+1, 7 t+1) will be

))1,0()1,0(exp(1
i

t
i

t
i NN ⋅+⋅′=+ ττσσ

),0(11 ++ += t
i

t
i

t
i Nxx σ

where i=1,…,l, N(0,1) represents a single standard Gaussian random variable,

Ni(0,1) represents the ith independent identically distributed standard Gaussian,

and 8 and 8 9 :<;0=?>A@4=B;0:DC3>E;GF =HCI@4:J;0:<K?=DCL=J;MF NPORQ�SUTVQXW�=VYZSU[4= individual and global step-

sizes, respectively. The global factor))1,0(exp(N⋅′τ allows for an overall change

of the mutability and guarantees the preservation of all degrees of freedoms. The

factor))1,0(exp(N⋅τ , allows individual changes of the mean step sizes \ i.

Schwefel suggested that

1
2

−



∝ lτ ,

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

31

() 1
2

−
∝′ lτ ,

and usually τ ′ ,] are set equal to one.

Further extensions were made to the mutation operator to incorporate correlated

mutations, so that the distribution of new trials could adapt to contours on the

error surface. The surfaces of equal probability density to place an offspring by

mutation are called mutation ellipsoids. Under independent Gaussian

perturbations, mutation ellipsoids are aligned with the co-ordinate axes. By using

correlated mutations, mutation ellipsoids have arbitrary orientation in the search

space and individuals can adapt to any advantageous direction of search. For this

purpose, the rotation angles],[ππ−∈ija were introduced and they are defined

by

22

2
)2tan(

ji

ij
ij

c

σσ
α

−
= ,

where cij is the corresponding element of the covariance matrix. The new solution

vector (xt+1, ^ t+1 _a` t+1) now will be

))1,0()1,0(exp(1
i

t
i

t
i NN ⋅+⋅′=+ ττσσ

)1,0(1
j

t
j

t
j N⋅+=+ βαα

)),(,0(111 +++ += ttt
i

t
i CNxx ασ bb

where C is the covariance matrix represented by the vectors σb of standard

deviations and αb of rotation angles, for all },...,1{ li ∈ and for all

}2/)1(,...,1{ −⋅∈ llj , and c is a constant and it was suggested by Schwefel to be

set as

0873.0≈β .

2.4.1.3 Selection

The selection operator’s function depends upon the evolutionary algorithm

method used. When using the (d-e.f g0hji S method, after the genetic operators of

crossover and mutation are applied, the best d members from both the parents and

offspring are selected to form the new generation of population. In the (d/klf g0h*i S

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

32

method, the best m members are again selected, but this time only out of the n
offspring.

Although the (m-o.n pLq3r S method might seem at first more appropriate to use

because it keeps the best individuals from both the parents and the offspring, this

might not always be true. The (m/sln p0qjr S method has the advantage, when applied to

multi-modal distribution, that it can escape from local minima easily. In addition,

in the case of changing environments, the (m-o.n pLq3r S method preserves outdated

solutions and is not able to follow the moving optimum.

2.5 EA-based methods for neural networks optimisation

2.5.1 EPNet

In [75] and [76], Yao and Liu have proposed an evolutionary algorithm that uses

only the mutation operator to evolve the topology and weights of feedforward

ANNs. Five different types of mutation are applied.

The algorithm starts by randomly initialising a population of potential solutions.

Each network is partially trained using a modified BP (MBP) algorithm with

adaptive learning rate. After training, the error of each network is evaluated and if

it has not been significantly reduced through training, the network is marked with

"failure". Otherwise the network is marked with "success".

Following, the networks are ranked from the best to worst according to their

fitness value. In this method, the fitness value of each network is determined by

the inverse of the error E obtained over a validation set containing T patterns.

∑∑
= =

−
⋅
−

⋅=
T

t

n

i
ii tzty

nT
oo

E
1 1

2minmax))()((100

omax and omin are the maximum and minimum values of output coefficients, n is

the number of output nodes and yi(t) and zi(t) are the actual and desired output of

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

33

node i for pattern t, respectively. A single parent j is selected out of M sorted

individuals for mutation with probability pj,

M
j

jp =)(.

The selected parent is then altered by a hybrid training algorithm consisting of

MBP and Simulated Annealing (SA). The network is first trained using the MBP,

and each error E is checked every k epochs, where k is predefined. If the error

decreases, the learning rate is increased. Otherwise, the learning rate is reduced

and the new weights and error are discarded. When the MBP cannot improve the

network anymore, the SA algorithm is applied. If after the SA algorithm has been

applied, the network has not improved significantly, four different mutation

operators are applied.

First, the Hidden Node Deletion operator is applied. A specified number of hidden

nodes are randomly deleted from the network. The network is trained with MBP

and its error value is evaluated. If this pruned network is better than the worst

network of the current population, the pruned network replaces the worst one and

no further mutations will be applied. Otherwise, the generated offspring is

discarded and the Connection Deletion operator is applied.

The approximate importance of each connection in the network is calculated using

∑
∑

=

=

−
=

T
t ji

t
ji

T
t

t
ji

jiwcesignifican

1
2

,,

1 ,
,

)(
)(

ξξ

ξ
,

where)(,,, www t
jiji

t
ji ∆+=ξ and ji,ξ is the average over the set of all t

ji,ξ . A

specified number of connections are deleted according to their significance. The

resulting network is trained with MBP and its error values are evaluated. As

before, if this network is better than the worst network of the current population, it

will replace it. Otherwise, the generated offspring is discarded and the mutation

operator of Connection and Node Addition will be applied.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

34

A specified number of connections are added probabilistically according to the

significance function described before. They are selected from those connections

with zero weights. The generated offspring 1, is trained with MBP and its error

value is determined. An offspring 2 is generated by node addition. New nodes are

added by randomly selecting an existing node and splitting it. The two nodes

obtained from splitting will have the same connections, and their weights are

determined according to the following equations

kiw

kiww

kiwww

ki

kiki

kikiki

<−=

<+=

≥==

for ,w

for ,)1(

for ,

2
ki

1

21

α

α ,

where t is a mutation parameter that can have either a fixed or random value.

Offspring 2 is also trained with MBP and its error value is determined. Offspring

1 and offspring 2 compete for survival, and the winner replaces the worst network

in the current population.

Random Initialisation
of ANN's

Initial Partial Training

Rank Based Selection

Mutations

Obtain New Generation

Hybrid Training

Connection / Node
Addition

Connection Deletion

Hidden Node Deletion

 Successful?

 Successful?

Stop?

 Successful?

Further Training

yes

yes

yes

yes

no

no

no

no

When the evolutionary process stops, the best member of the population is further

trained with MBP on a combined training and validation set. Then, this network is

tested on an unseen training set to evaluate its performance.

Figure 2.5 The EPNet

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

35

An alternative approach is to make use of all the members of the population

evolved. Each individual is treated as a module and the linear combination of all

members is the ensemble of the evolved ANNs (EANNs).

The simplest linear combination is majority voting. All individuals of the last

population are treated equally and participate in voting. The output the most

EANNs, will be the output of the ensemble.

In Rank-Based Linear Combination, a weight factor of each EANN is calculated

using

∑ =

−+=
N
j

i
j

iN
w

1)exp(

)1(exp(

β

β
,

where N is the population size and u is a scaling factor. The output of the

ensemble is then determined by ∑
=

=
N

j
jjowO

1
, where oj is the output of each

EANN.

Other methods for constructing the NN ensemble, incorporate the use of the

Recursive Least Squares (RLS) algorithm or the use of a GA, to determine a

subset of the population that would be used as an ensemble.

2.5.2 Co-Evolutionary Learning System (CELS)

Yao and Liu have also introduced a co-evolutionary learning system (CELS) [45],

to design NN ensembles. In this method, each NN is trained using negative

correlation learning. It introduces a correlation penalty term into the error function

of each NN, so that the individual NN can be trained co-operatively. Thus, the

error function Ei for an individual i is defined as:

()∑ ∑
= =





 +−==

N

n

N

n
iiii npnFnd

N
nE

N
E

1 1

2)()()(
2
11

)(
1 λ ,

where N is the number of training patterns, Ei(n) is the value of the error of

individual NN i at presentation of the nth training pattern, Fi(n) is the output of

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

36

individual NN, and pi is a correlation penalty function. The parameter v > 0 is

used to adjust the strength of the penalty. The function pi can be

∑
≠

−−=
ij

jii nFnFnFnFp))()(())()((,

where F(n) is the average of the output of all individual NNs for the nth training

pattern.

The standard mutation operator is applied by adding to the original weight vectors

a Gaussian random variable of zero mean and standard deviation equal to 1.

The fitness value of each NN is determined using a reward scheme. For each

training case, if there are p > 0 individual NNs that classify it, then each of these p

individuals receives 1 / p fitness reward, and the rest individuals receive zero

fitness reward. To obtain the fitness value, the fitness reward for each individual

is summed over all training cases.

At the end of the evolutionary process, in order to construct the ensembles, the

methods of majority voting, Rank-Based Linear Recombination and RLS

described before can be used.

2.5.3 Symbiotic Adaptive Neuro-Evolution (SANE)

In SANE [56], [63], two separate populations are maintained and evolved: a

population of neurons and a population of neural network blueprints. Each

individual in the neuron population specifies a set of connections to be made

within a neural network. Each individual in the network blueprint population

specifies a set of neurons to include in a neural network. The neuron evolution

searches for effective partial networks, while the blueprint evolution searches for

effective combinations of the partial networks.

In the neuron population, SANE evolves a large population of hidden neuron

definitions for a three-layer feedforward network. A neuron is represented by a

series of connection definitions that describe the weighted connections of the

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

37

neuron from the input layer and to the output layer. A connection definition

consists of a label and weight pair. The label is an integer value that specifies an

input or output unit, and the weight is a floating-point number that specifies the

weight.

 L W L W L W
4 0.1 6 -0.7 7 0.4

1 -0.8 5 -1.4 7 0.3

2 0.1 4 -0.6 7 -1.2
L: label
W: weight

Figure 2.6 The neuron population is shown on the left and the corresponding

network is shown on the right.

The blueprints are made up of a series of pointers to members of the neuron

population and define an effective neural network from a previous generation.

L W L W L

L W L W L

L W L W L

L W L W L

The evolution process in SANE is performed in two stages: the evaluation stage

and the reproduction phase. In the evaluation stage, the blueprints and neurons are

evaluated simultaneously. Every network blueprint is decoded and then its fitness

value is determined. The fitness value of each network blueprint is added to the

fitness value of each individual neuron contained in the network. After all the

network blueprints have been evaluated, each neuron's fitness is normalised by

Figure 2.7 The network blueprint population and the pointers to neurons.

Neuron Population

Blueprint
Population

1 2 3 4 5

6 7

-0.8 0.1
1.1 -1.4

-0.6

-0.7

0.4
0.3

-1.2

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

38

dividing its accumulated fitness value by the number of blueprints where it was a

participant.

In the reproduction stage, the standard operators of reproduction, crossover and

mutation are applied to generate the new populations of blueprints and neurons.

2.5.4 Hybrid of EA and Single Stochastic Search

In this method [50], once the initial population is randomly initialised and parents

are selected according to their fitness value, three sets of offspring are generated.

The first set of offspring is generated by the perturbation of the parent with a

Gaussian random variable of zero mean and standard deviation w , N(0, w0x . The

standard deviation w can be fixed or proportional to the corresponding height of

the response surface or conditionally based on search performance. Blending the

parameters of the randomly selected pair of parents generates the second set of

offspring. This can be implemented with a standard crossover operator. The final

set of offspring is generated using the Solis and Wets method [67].

The Solis and Wets method generates a Gaussian random variable N(b, w) where

the variance and standard deviation parameters, b and w , are determined using the

following algorithm. In this algorithm scnt and fcnt denote the repeated number of

successes and failures, respectively, in decreasing the objective function f. The

contraction, ct, and expansion, ex, constants, as well as the lower, w l, and upper,
y

u, limits of the value that the standard deviation can take, are predefined.

1. Initialise search vector x0 and bias vector b0. Set k=0, scnt=0, fcnt=0,

s0=1.

2. Set

otherwise
 if
 if
 if

1

1u
1

1













<
>⋅
>⋅

=

−

−
−

−

k

lk
k

k

k Fcntfcntct

Scntscntex

σ
σσσ

σ
σ

σ

3. Generate a multivariate Gaussian random variable z k ~ N(bk, {L|

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

39

4. If)()(kkk xfxf <+ ξ , then set kkk xx ξ+=+1 and

kkk bb 2.04.0 += ξ , scnt=scnt+1, fcnt=0.

5. Otherwise, if)()()(kkkkk xfxfxf ξξ +<<− , then set

kkk xx ξ−=+1 and kkk bb ξ4.0−= , scnt=scnt+1, fcnt=0.

6. Otherwise, kk xx =+1 and kk bb 5.0= , fcnt=fcnt+1, scnt=0.

7. If k=maximum number of iterations stop, else go to step 2.

After the three sets of offspring have been generated, their fitness is evaluated and

they compete for survival. The fittest survives and thus the new population is

generated. McDonell and Waagen [50] have used the Akaike's minimum

information theoretical criterion (AIC) to determine the fitness value of each

individual.

2.5.5 Multi-path Network Architecture

In [13], Cheng and Guan present a multi-path network architecture to evolve

neural networks. The multi-path architecture is used to accommodate for a

possible undesired minimum resulting from an evolution process. When the

evolution process is trapped in an undesired minimum with respect to one path,

the method seeks an alternative path to carry out the evolution.

When networks are trained, it is in general required to minimise an energy

function E,

E=XTWX

Initialise
Population

Evaluate
Fitness

Select
Parents

Offspring
~N(0, } ~

Offspring
by blending

Offspring
~N(b, �(~

Competition
for survival

New
Population

Figure 2.8 Hybrid of EA and Single Stochastic Search method.

 Chapter 2 - Evolutionary Computing Techniques & Algorithms

40

where X is the pattern space, and W is the connection matrix generated by the

learning rule. In this method, W is decomposed into K subsets,

W = W1 � W2 � … � WK

where

KkNjiwW k
ijk ,...,2,1},,...,2,1,,{ === .

Each Wk represents a different path in the network for learning and evolution. By

using K different rules to train each Wk, K distinct paths are obtained. A multi-

level energy function E is defined by

E = f(E1, E2, …,EK)

All K rules use the same training patterns and thus the desired minima will be at

the same locations on the surfaces of their respective energy functions. However,

the locations of the undesired minima will not be the same because different

optimisation criteria have been used.

During the evolution of a neural network, a random path is chosen. The evolution

process in this path continues until a minimum is reached. Then, a different path is

chosen and the evolution process starts again until a minimum in this different

path is reached. This procedure continues until the minimum obtained from all the

possible paths is the same.

2.5 Summary

This chapter dealt with the basic concepts of the various evolutionary computing

techniques; Genetic Algorithms, Niched Genetic Algorithms and Evolutionary

Algorithms. Their basic operators were introduced and the main strategies for

neural networks optimisation were outlined.

 Chapter 3 - Prediction of Time Series Signals

41

CHAPTER 3

PREDICTION OF TIME SERIES SIGNALS

3.1 Introduction

This chapter introduces time series signals and their basic properties. Following,

the procedure for time series signals prediction is outlined. Finally, the Group

Method of Data Handling (GMDH) algorithm and the Genetics-Based Self-

Organising Network (GBSON) method for time series prediction are introduced.

3.2 Time Series Signals

A time series is a set of observations xt, each one being recorded at a specific time

t. A discrete time series is one where the set of times at which observations are

made is a discrete set. Continuous time series are obtained by recording

observations continuously over some time interval. An example of a discrete time

series can be seen in Figure 3.1.

Analysing time series data led to the decomposition of time series into

components. Each component is defined to be a major factor or force that can

affect any time series. Three major components of time series have been

identified. Trend refers to the long-term tendency of a time series to rise or fall.

 Chapter 3 - Prediction of Time Series Signals

42

Seasonality refers to the periodic behaviour of a time series within a specified

period of time. The fluctuation in a time series after the trend and seasonal

components have been removed, is termed as the irregular component.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Figure 3.1 Monthly sunspot numbers, 01/1749-07/1999.

If a time series can be exactly predicted from past knowledge, it is termed as

deterministic. Otherwise it is termed as statistical, where past knowledge can only

indicate the probabilistic structure of future behaviour. A statistical series can be

considered as a single realisation of some stochastic process. A stochastic process

is a family of random variables defined on a probability space. A realisation of a

stochastic process is a sample path of this process. Thus, if a stochastic process is

defined by

))(cos()()(ωωω Θ+= vtAX t ,

then the realisations of this stochastic process would be the functions of t,

obtained by fixing &, defined by the form

)cos()(θ+= vtatx .

 Chapter 3 - Prediction of Time Series Signals

43

To gain insight into the dependence between the random variables of a time

series, its autocovariance function has to be evaluated. The autocovariance

function)(⋅xγ of a time series x(t) is defined by [8]

〉〈=)()(),(2121 txtxEttxγ ,

where 〈⋅〉E is the expectation operator. If a stochastic process is such that

〉++〈=)()(),(2121 ττγ txtxEttx ,

then its probabilistic structure does not change with time and the process is said to

be strictly stationary. If the above condition holds only with the restriction

iixE allfor ,)(µ=〉〈

where � is the mean value of the process, then the process is termed as stationary.

Otherwise, the process is termed as non-stationary.

To measure the degree to which two processes x(t) and y(t) are related over the

time axis, the cross correlation function is evaluated. The cross correlation

function is defined as [9]

〉++〈=)()(),(2121 ττγ tytxEttxy .

3.3 The Procedure of Time Series Signals Prediction

The prediction of time series signals is based on their past values. Therefore, it is

necessary to obtain a data record. When obtaining a data record, the objective is to

have data that are maximally informative and an adequate number of records for

prediction purposes. Hence, future values of a time series x(t) can be predicted as

a function of past values x(t-1), x(t-2), …, x(t-3).

x(t+2) = f(x(t-1), x(t-2), …, x(t-3))

The problem of time series prediction now becomes a problem of system

identification. The unknown system to be identified is the function)(⋅f with

inputs the past values of the time series.

 Chapter 3 - Prediction of Time Series Signals

44

While observing a system there is a need for a concept that defines how its

variables relate to each other. The relationship between observations of a system

or the knowledge of its properties is termed as the model of the system. Models

can be given in several different forms. A mental model does not involve any

mathematical formalisation, but the system's behaviour is summarised in a

nonanalytical form in a person's mind. A mental model is a driver's perception of

a car's dynamics. Graphic models make use of a graph or a table to summarise the

properties of a system. Mathematical models are mathematic relationships among

the system variables, often differential or difference equations. In system

identification, a set of candidate models is specified, where the search for the most

suitable one will be restricted.

The search for the most suitable model for a system is guided by an assessment

criterion of the goodness of a model. In the prediction of time series, the

assessment of the goodness of a model is based upon the prediction error of the

specific model.

After the most suitable model of a system has been determined, it has to be

validated. The validation step in the system identification procedure is very

important because in the model identification step, the most suitable model

obtained was chosen among the predefined candidate models set. This step will

certify that the model obtained describes the true system. Usually, a different set

of data than the one used during the identification of the model, the validation set,

is used during this step.

 Chapter 3 - Prediction of Time Series Signals

45

Collection of Data

Formation of Candidate Models
Set

Selection of Criterion of Model
Fitness

Identification of Model

Validation of Model

Acceptable
Model?

yes

no

Figure 3.2 The Procedure of Time Series Signals Prediction.

3.3.1 Models

3.3.1.1 Linear Models

3.3.1.1.1 Autoregressive (AR)

The general form of the autoregressive (AR) model is given by the linear

difference equation [31]

)()(...)1()(1 tentxatxatx ana
+−++−= ,

where the current value of the time series is expressed as a weighted sum of past

values plus the white-noise term e(t) with variance 2
eσ . Thus, x(t) can be

considered to be regressed on the na previous values of)(⋅x .

Model Validation

Model Identification

 Chapter 3 - Prediction of Time Series Signals

46

If an exogenous variable u(t) is added, the ARX model is obtained. The general

form of this model is [46]

)()(...)1()(...)1()(11 tentubtubntxatxatx bnan ba
+−++−+−++−= .

The adjustable parameters for this model are

[T
nn ba

bbbaaa 
−−−= 2121θ .

The two models can be rewritten as

AR:)()()(1 tetxzA =−

ARX:)()()()()(11 tetuzBtxzA += −−

where

a
a

n
n zazazA −−− −−−= ...1)(1

1
1

and

b
b

n
n zbzbzB

−−− ++= ...)(1
1

1 .

Now the model structure of AR and ARX can be shown schematically in Figures

3.3 and 3.4, respectively. It can be seen that the disadvantage of this model is that

the white noise goes through the denominator dynamics of the systems before

being added to the output.

 .

A
C

e

x

A
1

A
B �u

x

e

A
1

Figure 3.3 The AR model structure. Figure 3.4 The ARX model structure.

A
1

 Chapter 3 - Prediction of Time Series Signals

47

3.3.1.1.2 Moving Average (MA)

AR and ARX models give limited freedom in describing the properties of the

disturbance terms. The moving average (MA) model describes the time series as a

moving average of white noise. The general form of the MA model is [74]

)(...)1()()(1 cn ntectectetx
c

−++−+= .

The adjustable parameters now are

[]Tnc
ccc ...21=θ .

The model can be rewritten as

)()()(1 tezCtx −= ,

with

c
c

n
n zczczC −−− +++= ...1)(1

1
1 .

e
xC

Figure 3.5 The MA model structure.

3.3.1.1.3 Mixed models of AR & MA

If the models AR and MA are combined, the model ARMA is obtained. The

general form for this model is [8]

)(...)1()()(...)1()(11 cnan ntectectentxatxatx
ca

−++−++−++−= .

In the same way the model ARMAX is obtained and has the form

)(...)1()(

)(...)1()(...)1()(

1

11

cn

bnan

ntectecte

ntubtubntxatxatx

c

ba

−++−+

+−++−+−++−=
.

The two models can be rewritten as

ARMA:)()()()(11 tezCtxzA −− =

ARMAX:)()()()()()(111 tezCtuzBtxzA −−− += ,

using the same notation as before.

 Chapter 3 - Prediction of Time Series Signals

48

If the equation error e(t) in the ARMAX model is described by an ARMA model,

the model ARARMAX is obtained with the general form [46]

)(
)(

)(
)()()()(

1

1
11 te

zD

zC
tuzBtxzA

−

−
−− += ,

where

d
d

n
n zdzdzD

−−− +++= ...1)(1
1

1 .

D
C

�u
x

e

A
1B x

e

Figure 3.6 The ARARMAX model structure.

3.3.1.1.4 Integrated ARMA models (ARIMA)

Many observed non-stationary time series exhibit certain homogeneity and can by

accounted for by a modification of the models described before. The integrated

models ARIMA and ARIMAX are obtained by replacing x(t) and u(t) by their

differences)1()()(−−=∆ txtxtx and)1()()(−−=∆ tututu . Usually, the symbol

∇ is used to denote the difference operator. Thus, first differences are denoted as

∇x(t) = x(t) - x(t-1). Higher order differences are defined as ∇dx(t), where d is the

order, and they are calculated by consecutively taking differences of the

differences. The models have now the general form [46]

ARIMA:)()()()(11 tezCtxzA d −− =∇

ARIMAX:)()()()()()(111 tezCtuzBtxzA dd −−− +∇=∇ .

 Chapter 3 - Prediction of Time Series Signals

49

3.3.1.1.5 Seasonal ARMA Models (SARMA)

When a time series exhibits seasonality, it is useful to try to exploit the correlation

between the data at successive periods of time. To represent the seasonal models,

the seasonal difference operator is introduced. The first-order seasonal difference

with a span of s periods is defined as

)()()(stxtxtxs −−=∇ .

The seasonal ARMA (SARMA) model has the general form [74]

SARMA:)()()()(tezCtxzA sdD
s

s −− =∇∇ ,

where D represents the order of the seasonal difference operator, s the span, d is

the order of the difference operator and the polynomials)(and)(ss zCzA −− are

defined as

sn
n

ss a
a

zazazA −−− −−−= ...1)(1 ,

sn
n

ss c
c

zczczC −−− +++= ...1)(1 .

3.3.1.1.6 Output Error (OE)

This model assumes that the relation between input and undisturbed output w can

be written as a linear difference equation, and that the disturbances consist of

white measurement noise [46], thus

)(...)1()(...)1()(11 bnfn ntubtubntwftwftw
bf

−++−=−++−+

and

)()()(tetwtx += .

The model can be written as

)()(
)(

)(
)(

1

1
tetu

zF

zB
tx += −

−
,

where

f
f

n
n zfzfzF

−−− +++= ...1)(1
1

1 ,

 Chapter 3 - Prediction of Time Series Signals

50

and the parameter vector to be determined is now

T

nn fb
fffbbb 



= 2121θ .

F
B �u

x

e

Figure 3.7 The OE model structure.

3.3.1.1.7 Box-Jenkins (BJ)

The Box-Jenkins model [46] is obtained by describing the output error of the OE

model as an ARMA model. The BJ model's general form is

)(
)(

)(
)(

)(

)(
)(

1

1

1

1
te

zD

zC
tu

zF

zB
tx

−

−

−

−
+= .

F
B �u

x

e

D
C

Figure 3.8 The BJ model structure.

3.3.1.1.8 General family of model structures

The models presented so far can be represented by a general model structure

defined as

 Chapter 3 - Prediction of Time Series Signals

51

)(
)(

)(
)(

)(

)(
)()(

1

1

1

1
1 te

zD

zC
tu

zF

zB
txzA

−

−

−

−
− += ,

depending on which of the five polynomials A, B, C, D, E and F are used. This

general model can give rise to 32 different models.

3.3.1.2 Non-linear Models

3.3.1.2.1 Volterra Series Expansions

A general non-linear model has the form

)(),...)1(),((tetxtxh =− ,

where h is a non-linear function and e(t) is a zero mean white process. It is

assumed that the function h is invertible. Then the present value of the time series,

x(t), can be expressed as a function of the past values of the zero mean white

process. The general form of a non-linear model can now be written as

),...)1(),(()(−′= tetehtx .

If it is assumed that h′ is sufficiently well behaved so that it can be expanded in a

Taylor series, then the Volterra series expansion is obtained. The Volterra series

expansion, obtained by the Taylor series expansion about the point 0, is given by

the equation [61]

...)()()(

)()()()(

0 0 0

0 00

+−−−+

−−+−+=

∑ ∑ ∑

∑ ∑∑
∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

wtevteuteg

vteutegutegtx

u v w
uvw

u v
uv

u
uµ

.

The sequences gu, guv and guvw are termed as the kernels of the Volterra series and

are obtained by

0)(





−∂
′∂=
ute

h
g u ,

0

2

)()(










−∂−∂
′∂=

vteute
h

g uv and

0

3

)()()(










−∂−∂−∂
′∂=

wtevteute
h

guvw .

The constant term � is obtained by)0(h′=µ .

 Chapter 3 - Prediction of Time Series Signals

52

3.3.1.2.2 Wiener and Hammerstein Models

Wiener and Hammerstein models are used to describe systems that a linear model

can describe their dynamics, but there are static non-linearities at the input or the

output of the system. A Wiener model describes a system with static non-

linearities at the output, while a Hammerstein model describes a system with non-

linearities at the input. When there are non-linearities at both the input and output

of the system, a Wiener-Hammerstein model is used. The structure of the Wiener

and Hammerstein models is shown in Figures 3. 9 and 3.10, respectively. The

static non-linear function)(⋅f can be parameterised either in terms of physical

parameters or in black-box terms [46].

Linear Model f
u(t) x(t)

z(t)

Figure 3.9 The Wiener model structure.

Linear Model f
u(t) f(u(t)) x(t)

Figure 3.10 The Hammerstein model structure.

3.3.1.2.3 Bilinear Model

The bilinear model is an extension of the ARMA model. Its general form is given

by the equation [61]

∑ ∑ ∑∑
= = ==

−−+−=−+
ca n

j

m

i

k

j
ijj

n

j
j jteitxbjtecjtxatx

0 1 11
)()()()()(,

where c0 = 1. It is apparent that if bij is set to zero, for all i, j, then the above model

reduces to the standard ARMA model.

 Chapter 3 - Prediction of Time Series Signals

53

3.3.1.2.4 Threshold Autoregressive Model (TAR)

The threshold autoregressive model uses a number of linear AR models, each one

with different parameters. The model used at each time is chosen according to a

threshold value d. A first order TAR model has the form [61]







≥−+−
<−+−=

dtxtetxa

dtxtetxatx
)1(if),()1(
)1(if),()1()(22

11
,

where a1, a2 are constants and e1(t), e2(t) are white noise processes.

A first order l-threshold model has the form

liRtxtetxatx iii ,...,1 ,)1(if),()1()(=∈−+−= ,

where Ri are given subsets of the real line, with R1 denoting the interval (-��� r1]

and Rl the interval (rl-1, �@�

The k-order TAR model can now be defined as

)()(...)1()(10 tektxatxaatx ii
k

ii +−++−+= .

3.3.1.2.5 Exponential Autoregressive Model (EAR)

The exponential autoregressive models were introduced in an attempt to construct

time series models, which reproduce certain features of non-linear random

vibrations theory. The EAR model is obtained by replacing the constants of the

AR model with exponential functions of x2(t-1). Thus, now the parameters of the

model ai are given by the equation

))1(exp(2 −−+= txa iii γπφ ,

where γπφ and , ii are constants.

The general form of the EAR model is [61]

)()(...)1()(1 tektxatxatx k +−++−= .

 Chapter 3 - Prediction of Time Series Signals

54

3.3.2 Measuring Prediction Accuracy

3.3.2.1 Mean Absolute Deviation (MAD)

The mean absolute deviation (MAD) measures the prediction accuracy by

averaging the magnitudes of the prediction error for each record in the data set. If

the actual value of a time series at time t is denoted by x(t) and its prediction is

denoted as)(ˆ tx , the error or residual of the prediction is given by

)(ˆ)()(txtxte −= . Then, the formula for the mean absolute deviation is [20]

N

te

N

txtx
MAD ∑∑ =

−
=

|)(||)(ˆ)(|
,

where N is the number of records in the data set.

3.3.2.2 Mean Square Error (MSE) & Root Mean Square Error (RMSE)

The mean square error measures the prediction accuracy in a similar way to

MAD. It averages the sizes of prediction errors avoiding the cancelling of positive

and negative terms. The MSE, instead of using the absolute value of the

prediction errors, uses their square value. The advantage of using the square value

of the prediction errors is that it gives more weight to large prediction errors than

MAD. The formula for the mean square error is

N

te

N

tyty
MSE ∑∑ =

−
=

22)())(ˆ)((
,

where N is the number of records in the data set.

The MSE is measured in the squares of the units of the original series, which

makes it harder to be interpreted. For this reason, the root mean square error can

be evaluated, that is given simply by the equation

MSERMSE = ,

and is measured in the same units as the original time series.

 Chapter 3 - Prediction of Time Series Signals

55

3.3.2.3 Mean Absolute Percent Error (MAPE)

The mean absolute percent error (MAPE) is a unit-free evaluation measurement.

This allows the comparison of the accuracy of the same or different models on

different time series. It is evaluated by expressing each prediction error as a

percentage according to actual value of the time series according to the formula

[20]

%100
)(
)(

⋅=
∑

N
tx
te

MAPE ,

where N is the number of records in the data set.

3.3.2.4 Pearson's Coefficient of Correlation (r)

Often the prediction accuracy of a model is determined with the use of plots. A

plot such as that is the diagnostic plot of x(t) versus)(̂tx . The criterion for a good

model when using this plot is that the plotted points fall close to the 45Û�OLQH��7R
assist the evaluation of the goodness of model using this diagnostic plot, the

Pearson's coefficient of correlation is introduced. The correlation coefficient is

evaluated by the formula [20]

xxxx

xx

SSSS

SS
r

ˆ̂

ˆ= ,

where

∑ −= 2)(xxSSxx

∑ −= 2
ˆ̂)̂ˆ(xxSS xx

∑ −−=)̂ˆ)((ˆ xxxxSS xx

and x , x̂ are the mean actual and predicted values of the time series respectively.

The correlation coefficient r takes values in the (-1, 1). To make the assessment of

the prediction accuracy easier, the coefficient of determination r2 takes values in

the range (0, 1). The closer r2 is to 1, the closer the plotted points come to a

 Chapter 3 - Prediction of Time Series Signals

56

straight line. Precaution has to be taken to make sure that the line where the points

come close is actually the perfect prediction (45Û��OLQH�

3.3.2.5 Theil's Inequality Coefficient (U)

Theil's inequality coefficient (U) measures the prediction accuracy of a model in

relation to the "no-change" model. The "no-change" model assumes that the

values of a time series are relatively unchanging from period to period. Then, the

current value of the time series is used as the forecast for the next period, i.e.

)()1(txtx =+ .

Theil's inequality coefficient (U) can be evaluated using three different formulas

[20]

∑
∑

−−
=

2

2

))1()((

)(

txtx

te
U ,

model) change"-no"(

)model(

MSE

MSE
U =

and

∑
∑ −

=
2

2

)(

))()((

tA

tPtA
U ,

where P(t) is the predicted change in period t,)1()(̂)(−−= txtxtP , and A(t) is the

actual change in period t,)1()()(−−= txtxtA .

The first formula is calculated from raw data. The second formula shows clearly

how the comparison to the "no-change" model is made and finally the third

formula is most relevant when the objective is to predict changes in a time series.

If U is evaluated according to the second formula, the model predicts perfectly if

U=0, since its MSE will also be zero. If the model predicts about as well as the

"no-change" model then U will be 1. If U is less than 1 then the model predicts

better than the "no-change" model, and if U is greater than 1 the model predicts

worse than the "no-change" model.

 Chapter 3 - Prediction of Time Series Signals

57

3.3.2.6 Theil's Decomposition of MSE

The MSE can be decomposed as

222
ˆ

2)1()()ˆ(xxx srsrsxxMSE ′−+′−′+−= ,

where x , x̂ are the mean actual and predicted values of the time series

respectively, r is the Pearson's coefficient of correlation and

N

txtx
sx

∑ −
=′

2))()((
,

N

txtx
sx

∑ −
=′

2

ˆ
))(̂)(̂(

.

If both sides of the decomposed form of the MSE are divided by the MSE, the

decomposition form becomes











 ′−
+











 ′−′
+











 −=
MSE

sr
MSE

srs
MSE

xx xxx
222

ˆ
2)1()()ˆ(

1 .

UM UR UD

Each of the three components UM, UR, UD can now be interpreted as a proportion

or percentage of the MSE. UM measures the proportion of the MSE that is caused

by bias in the prediction model. UR measures how much of the MSE is due to the

regression line deviating from the 45Û�OLQH��)LQDOO\�� UD measures the proportion of

the MSE that is caused by random disturbances that cannot be controlled.

3.3.3 Model Structure Selection

In previous sections, various types of models were presented that are possible to

represent a system. When choosing a model to represent a system, its type is not

the only consideration. Ideally a selected model would be the simplest possible

with the smallest possible prediction error. It is obvious that there will be a

compromise between the complexity of the model and its prediction accuracy.

 Chapter 3 - Prediction of Time Series Signals

58

One of the most common criteria for the trade off between complexity and

accuracy is the Akaike Information Criterion (AIC) that is given by [72]

kxpNAIC 2)̂|(log += θ

for a sequence of observations Nxxx ,...,, 21 from a random variable x, which is

characterised by the probability density function px(�). N is the number of records

in the data set and k is the number of parameters in the model evaluated.

Another common criterion is the Minimum Description Length (MDL), which is

defined by the equation [72]

NkxpMDL log5.0)̂|(log +−= θ ,

using the same notation as before.

3.3.4 Model Validation

The last step in the system identification procedure is to validate the identified

model. Validation of a model can be performed in a number of ways.

A possible validating method is to check whether the model satisfies its purpose.

For example, in a prediction problem, the model can be validated by evaluating

the prediction error over a validation data set that is different from the data set

used during the identification of the model.

For a model that is parameterised in terms of physical parameters, a validation is

to confront the estimated values and their estimated variances with what is

reasonable from prior knowledge.

A very useful technique for validation of a model is the residual analysis. The

residuals of a model are defined as

)(̂)()(txtxt −=ε ,

and carry information about the quality of the model. Various tests can be

performed on the residuals to validate the model. For example if the model is of

type ARMAX, three possible correlation tests for the residuals are:

 Chapter 3 - Prediction of Time Series Signals

59

• 0(t) is zero mean white noise, ststE , allfor ,0)()(=〉〈 εε

• 0(t) is independent of past inputs, stsutE >=〉〈 for ,0)()(ε

• 0(t) is independent of all inputs, stsutE , allfor ,0)()(=〉〈ε

3.4 Application of Neural Networks in Time Series Prediction

The advantage of using neural network models is that they can approximate or

reconstruct any non-linear continuous function. The learning process of a neural

network can be regarded as producing a multi-dimensional surface composed of a

set of simpler non-linear functions that fit the data in some best sense. Different

neural network architectures can be used in time series prediction.

3.4.1 Multi-layer Perceptron (MLP)

The past values of the time series are applied to the input of the network. The

hidden layer of the MLP network performs the weighting summation of the inputs

and the non-linear transformation is performed by the sigmoid function. The log-

sigmoid function is

)exp(1
1

)(
x

xf
−+

= ,

and the tan-sigmoid function is

)exp()exp(
)exp()exp(

)(
xx
xx

xf
−+
−−= .

The output layer of the network performs a linear weighting summation of the

outputs of all the hidden units, producing the predicted value of the time series as

[14]

∑ ∑
= =











+−+=

h

j

n

i
jjijj wikxwfwwtx

1 1
00)()(̂ ,

where h is the number of hidden units, n is the number of input units, wji are the

weights between the input and hidden layer, wj are weights between the hidden

 Chapter 3 - Prediction of Time Series Signals

60

and output layer and)(⋅jf is the sigmoid activation function at the jth hidden

unit. The weights are adjustable and are determined during the training of the

network.

The number of hidden layers and hidden units has to be determined before the

training of the network is performed. It has been suggested that for a training set

with p samples, a network with one hidden layer with (p-1) hidden units can

exactly implement the training set [14]. However, this is only guidance and the

number of hidden layers and units is problem specific. In addition, according to

the problem, other activation functions than the sigmoid can be used. A two-layer

MLP can exactly represent any Boolean function. A two-layer MLP with log-

sigmoids in the hidden layer and linear functions in the output layer can

approximate with arbitrarily small error any continuous function. A three-layer

MLP with the same transfer functions as before, can approximate non-linear

functions to arbitrary accuracy.

P(1)

a(S)

a(1)

a(2)P(2)

P(R)

bh(1)
W(oh)W(hi)

bh(H)

bo(1)

bo(2)bh(2)

bo(S)

.

.

.

.

.
.
.

Input layer Hidden layer Output layer

Figure 3.11 The Multi-layer Perceptron.

3.4.2 Radial Basis Function Networks (RBF)

The Radial Basis Function networks are two-layered structures. RBF networks

have only one hidden layer with radial basis activation functions, and linear

activation functions at the output layer. Typical choices for radial basis functions

()cxx −Φ=)(ϕ are

• piecewise linear approximations: rr =Φ)(,

 Chapter 3 - Prediction of Time Series Signals

61

• cubic approximation: 3)(rr =Φ ,

• Gaussian function:)/exp()(22 σrr −=Φ ,

• thin plate splines:)log()(2 rrr =Φ ,

• multi-quadratic function: 22)(σ+=Φ rr ,

• inverse multi-quadratic function: 221)(σ+=Φ rr ,

where 1 is a parameter termed as the width or scaling parameter. The centres and

widths of each radial basis function are determined during an initial training stage.

The layer weights are determined in a different training stage.

The output of the network is a linear combination of the radial basis functions,

and is given by [14]

()∑
=

−Φ+=
h

i
ii twwtx

1
0)()(cx ,

where T)](),...,2(),1([)(ntxtxtxt −−−=x .

RBF networks have the advantage that they have a simpler architecture than

MLPs. In addition, they have localised basis functions, which reduces the

possibility of getting stuck to local minima.

P(1)

a2(S)

a2(1)

a2(2)P(2)

P(R)

W2(i, j)W1(i,j)

.

.

.

.

.

.

.

.

.

Input layer Hidden layer Output layer

a1(1)

a1(2)

a1(H)

Figure 3.12 The Radial Basis Function network.

 Chapter 3 - Prediction of Time Series Signals

62

3.4.3 Sigma-pi and Pi-sigma Networks

Higher order or polynomial neural networks send weighted sums of products or

functions of inputs through the transfer functions of the output layer. The aim of

higher order neural networks is to replace the hidden neurons found in first order

neural networks and thus reduce the complexity of their structure.

The sigma-pi network is a feedforward network with a single "hidden" layer. The

output of the "hidden" layer is the product of the input terms and the output of the

network is the sum of these products. They have only one layer of adaptive

weights that results in fast training. The output of the network is given by

∑
=

+=
h

i
iii vwwtx

1
0)()(̂ ϕ ,

where

∏
=

=
n

j
jiji xav

1
,

3i is the activation function at the "hidden" layer, aij are the fixed weights (usually

set to 1) and wi are the adjustable weights.

The pi-sigma network has a very similar structure to the sigma-pi network. Their

difference is that the output of the hidden layer is the sum of the input terms and

the output of the network is the product of these terms. They also have a single

layer of adaptive weights, but in these networks the adaptive weights are in the

first layer. The output of the network is

∏
=

+=
h

i
iii vawtx

1
0)()(̂ ϕ ,

where

∑
=

=
n

j
jiji xwv

1
,

in the same notation as before.

 Chapter 3 - Prediction of Time Series Signals

63

� � �

 �

…

…x1 x2 xN

wij

fixed
weights

� � �

�

…

…x1 x2 xN

wij

fixed
weights

 3.4.4 The Rigde Polynomial network

The Ridge Polynomial network [66] is a generalisation of the pi-sigma network. It

uses pi-sigma networks as basic building blocks. The hidden layer of the network

consists of pi-sigma networks and their output is summed to give the output of the

network. It also has only one layer of adjustable weights in the first layer.

Ridge Polynomial networks maintain the fast learning property of pi-sigma

networks and have the capability of representing any multivariate polynomial.

The Chui and Li's representation theorem and the Weierstrass polynomial

approximation theorem prove this property of ridge polynomial neural networks

[26]. More details about Ridge Polynomial Neural Networks can be found in [26]

and [66].

Figure 3.12 (a) The sigma-pi network, (b) The pi-sigma network.

(a) (b)

 Chapter 3 - Prediction of Time Series Signals

64

PSN1

…

…x1 x2

PSNnPSNi

xN

fixed
weights

wij

�

…

3.4 Group Method of Data Handling (GMDH)

The Group Method Data Handling (GMDH) [19] is a self-organising method that

was initially proposed by Ivakhnenko to produce mathematical models of

complex systems by handling data samples of observations. It is based on the

sorting-out procedure, i.e. consequent testing of increasingly complex models,

chosen from a set of models-candidates, in accordance with a given external

criterion on a separate part of data samples. Thus, GMDH algorithms solve the

argument

)(minarg~ gCRg
Gg ⊂

= ,

where G is the set of candidate models and CR(g) is an external criterion of

model's g quality.

Most GMDH algorithms use polynomial reference functions to form the set of

candidate models. The Kolmogorov-Gabor theorem shows that any function

)(xfy
&= can be represented as

∑∑ ∑∑∑∑ ++++=
i j i j k

kjiijkjiij
i

ii xxxaxxaxaay ...0 ,

where ix is the independent variable in the input variable vector x� and a� is the

coefficient vector. Other non-linear reference functions such as difference, logistic

Figure 3.13 The Ridge Polynomial network

 Chapter 3 - Prediction of Time Series Signals

65

and harmonic can also be used. GMDH algorithms are used to determine the

coefficients and terms of the reference functions used to partially describe a

system. GMDH algorithms are multi-layered, and at each layer the partial

description is simple and it is conveyed to the next layers to gradually obtain the

final model of a complex system.

It has been proven that GMDH algorithms converge and that a non-physical

model obtained by GMDH is better than a full physical model on error criterion

[79]. A special feature of the GMDH algorithms is that the model to be selected is

evaluated on a new data set, different from the one used to estimate its parameters.

3.4.1 Combinatorial GMDH algorithm (COMBI)

This is the simplest GMDH algorithm. First n observations of regression-type data

are taken. These observations are divided into two sets: the training set and the

validating set.

Y1 x11 x12 . . . x1m

Y2 x21 x22 . . . x2m

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

.

.

.

Ynt

.

.

.

xnt,1

.

.

.

xnt,2

.

.

.

. . .

. . .

. . .

. . .

Xnt,m

.

.

.

Yn xn xn2 . . . Xnm

The COMBI algorithm is multi-layered; at each layer, it obtains a candidate

model of the system and once the models of each layer are obtained, the best one

is chosen to be the output model.

Y X - independent variables

Training

Observations

Validation

Observations

 Chapter 3 - Prediction of Time Series Signals

66

The first layer model is obtained by using the information contained in every

column of the training sample of observations. The candidate models for the first

layer have the form

mixaay i ,...,2,1 ,10 =+= .

To obtain the values of the coefficients a0 and a1 for each of the m models, a

system of Gauss normal equations is solved. In the case of the first layer, the

system of Gauss normal equation for the ith model will be





















=







⋅





















∑

∑

∑∑

∑

=

=

==

=
nt

k
kki

nt

k
k

nt

k
ki

nt

k
ki

nt

k
ki

yx

y

a

a

xx

xnt

1

1

1

0

1

2

1

1 ,

where nt is the number of observations in the training set.

After all possible models from this layer have been formed, the one with the

minimum regularity criterion AR(s) [68] is chosen. The regularity criterion is

defined by the formula

∑
+=

−=
n

nti
ii yy

nv
sAR

1

2)ˆ(
1

)(,

where nv is the number of observations in the validation set, n is the total number

of observations, ŷ is the estimated output value and s is the model whose fitness is

evaluated.

A small number of variables that give the best results in the first layer, are allowed

to form second layer candidate models of the form

mjixaxaay ji ,...,2,1, ,210 =++= .

Models of the second layer are evaluated for compliance with the criterion, and

again the variables that give best results will proceed to form third layer candidate

models. This procedure is carried out as long as the criterion decreases in value,

and candidate models at the mth layer will have the form

mljixaxaxaay lmji ,...,2,1,, ,...210 =++++= .

 Chapter 3 - Prediction of Time Series Signals

67

After the best models of each layer have been selected, the output model is

selected by the discriminating criterion termed as /2. A possible discriminating

criterion is the variation criterion RR(s) defined by [6]

∑

∑

=

=

−

−

=
n

i
i

n

i
ii

yy

yy

sRR

1

2

1

2

)(

)ˆ(

)(,

where y is the mean output value and s is the model whose fitness is evaluated.

The model with the minimum value of the variation criterion RR(s) is selected as

the output model. Other discriminating criteria can be used that make a

compromise between the accuracy and complexity of a model.
 1...L 1 2 3 . . . M

1
2

 Y . X 1
k-3 .
k-2 . - Learning subsample
k-1
k

 - Checking subsample

N

 i
Y Y = a0 + a1xi CR

F models

 i j
Y Y = a0 + a1xi + a2 xj CR

 δ2

 ↓
 min

 Output
 model

 i j l
Y Y = a0 + a1xi + a2 xj + ... + aM xl CR

 2 3 4 5
1 - data sampling,
2 - layers of partial descriptions complexing,
3 - form of partial descriptions,
4 - choice of optimal models,
5 - additional model definition by discriminating criterion.

Figure 3.9 The Combinatorial GMDH algorithm (COMBI).

 Chapter 3 - Prediction of Time Series Signals

68

3.4.2 Multi-layered Iterative GMDH algorithm (MIA)

The MIA algorithm [35] works in a similar way to the COMBI algorithm. The

candidate models at the first layer are derived from the information contained in

any two columns of the independent variables. The second layer uses information

from four columns, the third from eight columns and so on. The optimal model at

each layer is chosen in the same manner as in the COMBI algorithm, by the

external criterion CR. In this algorithm though, a specified number of the best

models in each layer are used to extend the input data sample. The output model is

chosen again by a discriminating criterion.

 1...L 1 2 3 . . . M 1 F1 1 F2
1
2

 Y . X
k-3 .

k-2 . 1
k-1
k

N

 F1 F2

 i j l
Z Z = a0 + a1xi + a2xjxl CR

V V = b0 + b1zi + b2zjzl CR

 δ2

 ↓

 output
 model

 F3 min

 W W = c0 + c1vi + c2vjvl CR

 2 3 4 5
Output model: Yk+1 = d0 + d1x1k + d2 x2k+ ... +dm xM k xM-1 k

1 - data sampling
2 - layers of partial descriptions complexing
3 - form of partial descriptions
4 - choice of optimal models
5 - additional model definition by discriminating criterion
F1 and F2 - number of variables for data sampling extension.

Figure 3.11 The MIA algorithm.

 Chapter 3 - Prediction of Time Series Signals

69

3.4.3 Objective Systems Analysis Algorithm (OSA)

The OSA algorithm [39] realises candidate models as systems of equations

between the independent variables of the observation data. It uses implicit

templates, whose form is shown in Figure 3.10, to form the candidate models. The

gradual increase in the complexity of candidate models corresponds to the

increase in the complexity of the implicit templates. The output variables are not

specified; instead any of the regressors can be an output variable.

1 2 3 . . . m
 1
 .
 .
k-2
k-1
 k
 .
 nt

 . .
 . .

Figure 3.10 An implicit template.

At the first step of the OSA algorithm, candidate models are formed using

information contained in each column of the independent variables matrix and

have the form

)2(2)1(10)(−− ++= kikiki xaxaax ,

where ax
&&

, are the independent variables and coefficients vectors, i is the index of

the column selected and k is the index of the observation point taken as an output.

At the second step, the information contained in two columns of the independent

variables matrix are used, to form models represented by two-equation systems of

the form

)2(2)1(1)(0)2(2)1(10)(−−−− +++++= kjkjkjkikiki xbxbxbxaxaax

)2(2)1(1)(0)2(2)1(10)(−−−− +++++= kikikikjkjj xdxdxdxcxcckx ,

where i, j are the selected columns of independent variables, k is the point of

observation in the training data set taken as the output and a� , b
&

, c� , d
&

 are the

vectors of coefficients.

 Chapter 3 - Prediction of Time Series Signals

70

Models for the following steps are obtained in the same manner. The algorithm

terminates when the system criterion stops decreasing. The system criterion is

defined as

22
2

2
1 ...

1
Ssystem CRCRCR

S
CR +++= ,

where S is the number of equations in the system, and CRi is the external criterion

for each of the equations in the system. The output model is chosen as the system

with the minimum system criterion.

The advantage of OSA is that the number of regressors is increased and in

consequence, the information embedded in the data sample is utilised better. A

disadvantage is that it requires a large amount of calculations to solve the system

of equations and a greater number of models have to be searched.

3.4.4 Analogues Complexing Algorithm

The state of a complex object can be described by a vector of characteristic

variables represented in the sample of observation data. To make the prediction, it

is sufficient to find one or more close analogues of its state in previous history and

to see what happened next. The model of the object is no longer needed since its

role is played by the object itself. The Analogues Complexing algorithm [34] is

non-parametric and is used when the dispersion of noise is too big. It searches for

analogues from the given data sample which are equivalent to the physical model.

Predictions are not calculated but selected from the observations data set.

The algorithm finds for the last part of the behaviour trajectory (output pattern),

one or more analogous parts in the past (analogous pattern). The set of possible

patterns Pi,k+1 for the output pattern Pk
A = Pn-k,k+1 is generated with the use of a

sliding window, where k+1 is the width of the window, n is the total number of

observations and a pattern is defined as),...,,(11, kiiiki xxxP +++ = &&&

.

 Chapter 3 - Prediction of Time Series Signals

71

The most similar patterns have to be selected from all possible patterns. The

selection task of the most similar patterns is a four-dimensional problem with the

following dimensions:

• variables included in the pattern,

• number of analogues selected,

• width of the patterns,

• values of weight coefficients with which the patterns are complexed.

If these patterns are found the prediction can be achieved by applying the known

continuation of these analogous patterns.

3.4.5 Objective Computer Clusterisation (OCC) Algorithm

Clustering a data sample is its division into clusters. The number and points of the

sample clusters are selected in such a way so that each cluster includes a compact

group of closely situated sample points. Each point is present in only one cluster.

Clustering can be regarded as a discrete description of a system.

OCC [38] is a non-parametric algorithm that finds optimal clusterisations of input

data samples among all possible clusterisations. The use of data sample

clusterisations as the description of complex systems is more effective than the

use of parametric models, especially when the system is ill defined.

Construction of a hierarchical tree of clusterings orders and reduces the sorting

while the clustering optimum according to a criterion is not lost. The optimal

clusterisation can be found by the criterion of balance of clusterings. To compute

the criterion, the sample is divided into two equal parts A, B. A clustering tree is

constructed on each sub-sample and the criterion of balance is computed at each

step with the same number of clusters. The criterion requires finding the

clustering where both the number and co-ordinates of the centres (middle points)

of corresponding clusters coincide and therefore the balance criterion BL is

minimised. The balance criterion is defined as

 Chapter 3 - Prediction of Time Series Signals

72

BL
MK

x xoA oB
i

K

j

M

= − →
==

∑∑1 2

11

() min

where K is the number of clusters at a given step of the tree construction, M is the
number of co-ordinates, xoA are the co-ordinates of the centres of clusters
constructed within part A, and x0B are the co-ordinates of the centres of clusters
within part B.

3.4.6 Probabilistic Algorithm based on the Multi-layered Theory of

 Statistical Decisions (MTSD)

In this algorithm, the optimal values of output variables are found according to the

probabilities of the input variables. The single and pair empirical probabilities of

the input variables in the data sample are calculated, and the optimal output value

is found as the one with the maximum sum of probabilities defined as

∑∑∑ += pairsingle PPP ,

where

N

E
P single

single = ,
N

E
P pair

pair = ,)()(),(singlesinglepair jEiEjiE ⋅= ,

E is the expectation operator and N is the number of possible events. More details

can be found in [37].

3.5 Twice Multi-layered Neural Nets (TMNN)

Self-organising modelling is based on statistical learning networks. These

networks model complex systems by subdividing them into manageable pieces

and then applying regression techniques to solve each of these problems. The

disadvantage of the statistical networks is that they require a priori knowledge of

the system to be modelled. The number of layers and nodes and their transfer

functions have to be predefined. The GMDH overcomes this problem by adapting

the architecture of the network while it builds the model of a system.

 Chapter 3 - Prediction of Time Series Signals

73

In twice multi-layered neural nets [36], the neurons comprising the network are

also multi-layered. The self-organisation of a neural network is performed with

the use of a GMDH algorithm to determine the number of neuron layers and the

sets of input and output variables for each neuron.

The number of neurons in the first layer is equal to the number of independent

variables given in the initial data set. The output variables of each layer of

neurons are used as the input variables for the next layer. It is also possible to

extend the regression area by allowing the input and output variables of a layer to

be used as the input variables for the next layer. The extension of the regression

area is normally accompanied by a threshold value for the number of variables

that can be passed on from one layer to another. This is done to limit the

computation time required.

3.6 Genetics-Based Self-Organising Network (GBSON)

In [42], Kargupta and Smith proposed a method for system identification using

evolving polynomial networks. This approach was motivated from the work of

Ivakhnenko who introduced the Group Method of Data Handling (GMDH).

The method introduced by Kargupta and Smith is the Genetics-Based Self-

Organising Network (GBSON). It is a hybrid method of the GMDH and Genetic

Algorithms. The GBSON method was introduced to overcome the drawbacks of

the original GMDH algorithms, since they use local search techniques to obtain an

optimal solution.

The GBSON uses polynomial neural networks to represent the model of the

system to be identified. Each layer of the polynomial neural network is regarded

as a separate optimisation problem. The input to the first layer of the network is

the independent variables of the data sample. The output of each layer is the peak

nodes obtained by the use of a multi-modal Genetic Algorithm. The peak nodes

selected to be the output of a layer are also the inputs for the next layer.

 Chapter 3 - Prediction of Time Series Signals

74

The population members of the GA are network nodes represented by an eight-

field bit string. The two first fields are used to represent the nodes from the

previous layer connected to the present node. The other six fields are used to

represent the coefficients of a quadratic function that determines the output of the

node y,

2
2

2
12121 fzezzdzczbzay +++++= ,

where z1 and z2 are the outputs of the connected nodes in the previous layer.

The fitness measure of a node is given by calculating its description length. The

description length gives a trade off between the accuracy of the prediction and the

complexity of the network. The equation used by Kargupta and Smith for

calculating the description length is

,log5.0log5.0 2 nmDnI n +=

where 2
nD is the mean-square error, m is the number of coefficients in the model

selected and n is the number of observations used to determine the mean -square

error.

The multi-modal GA used in GBSON incorporates the fitness-sharing scheme,

where the shared fitness is given by

i

i
i m

f
f =′ .

fi is the original fitness of the node and mi is the niche count defined by

∑
=

=
N

j
iji dshm

1
)(,

where








<





−=

otherwise 0

 if 1)(sij
s

ij

ij
d

d
dsh σ

σ

α

,

N is the population size and dij is the Hamming distance between the members of

the population i and j. The niche radius 1s is determined by the equation

 Chapter 3 - Prediction of Time Series Signals

75

q
l

i

ls

i
l

=




∑
=

σ

02

1
,

where l is the string length and q is the number of nodes in the previous network

layer.

New populations are obtained after applying the genetic operators of tournament

selection, single-point crossover and point mutation. A mating restriction is also

applied on the members to be crossed. If a member i is to be crossed, its mate j is

selected such that dij < 1s. If no such mate can be found then j is selected

randomly.

The GBSON procedure continues until the GA converges to a layer with a single

node.

3.7 Summary

In this chapter it was defined what a time series signal is and what are its basic

properties. The procedure of time series signal prediction was presented, with the

most commonly linear and non-linear models being stated. Methods for

measuring the prediction were also outlined. The criteria for model structure

selection and model validation were also stated. Following, the most commonly

used neural networks in time series prediction were identified. Finally, the GMDH

algorithm and GBSON method for time series prediction were analysed.

 Chapter 4 - Results

76

CHAPTER 4

RESULTS

4.1 Introduction

In this chapter, the method used to solve the time series prediction problem is

firstly presented. Following, the results obtained with the implemented method are

presented for various time series data. Finally, the performance of the

implemented method is compared with the performance of the GMDH algorithm

COMBI.

4.2 Implementation

The method used to solve the time series prediction problem is based on the

GBSON method introduced by Kargupta and Smith [42]. This method is a hybrid

of the GMDH and GA.

As with the original GMDH algorithm, initially the observed data table is formed.

This table contains the past values of the time series to be predicted as m

independent variables, xi. The desired output values yi are the dependent variables

of the data table.

 Chapter 4 - Results

77

The independent variables of the data table form the input nodes of the first layer

of the polynomial neural network used to model the time series. In the original

GMDH algorithm, all possible combinations of pairs of the independent variables

are formed to determine the parameters of the function used to evaluate the output

of each node. The function used to evaluate the output of a node is

22
jijiji fxexxdxcxbxay +++++= .

The parameters of this function a, b, c, d, e and f are determined by solving a

system of normal Gauss equations for each pair of independent variables. In the

GBSON method, the pairs of independent variables and the parameters of the

function used to evaluate the output of each node, are determined using a niched

genetic algorithm.

The niched genetic algorithm is applied at each layer to determine the number of

nodes in the layer, as well as the layer weights of the polynomial neural network.

The output values of each layer are taken as the input values for the next layer to

be determined. The construction of the polynomial neural network is terminated

when the niched genetic algorithm constructs a layer with a single node.

In the following sections, the niched implemented genetic algorithm is described.

4.2.1 Representation

The potential network nodes are represented using an eight-field bit string. The

first two fields represent the input of the current node, i.e. the nodes of the

previous layer that it is connected with. The last six fields represent the

parameters of the function used to determine the output of the current node. The

schematic representation of a potential network node is shown in Figure 4.1. The

size of the fields that represent the parameters of the function was set to 16 bits.

The size of fields that represent the nodes of the previous layer the current node is

connected to was set according to the number of independent variables of the

previous layer.

 Chapter 4 - Results

78

 a bc d e f i j

95 ... 80 79 ... 64 63 ... 48 47... 32 31 ... 16 15 ... 0

Figure 4.1 Schematic representation of potential network nodes.

4.2.2 Fitness Evaluation

A node's fitness is evaluated according to its prediction error. The percent square

error for a node is used as the node's fitness in the GA. Thus, the fitness of a node

is given by the formula

∑

∑

=

=
−

=
nv

t

nv

t
i

i

tx

tztx

f

1

2

1

2

)(

))()((

,

where nv is the number of points in the validation set, x(t) is the actual value of

the time series at time t and zi(t) is the output of the ith node at time t.

4.2.3 Selection

The search for the optimal nodes in a layer of the network is a multi-modal

problem. Therefore, a niched genetic algorithm is used and the selection is

performed according to the shared fitness of a node. The shared fitness is given by

i

i
i m

f
f =′ .

fi is the original fitness of the node and mi is the niche count defined by

∑
=

=
N

j
iji dshm

1
)(,

where

 Chapter 4 - Results

79








<





−=

otherwise 0

 if 1)(sij
s

ij

ij
d

d
dsh σ

σ

α

,

N is the population size and dij is the Hamming distance between the members of

the population i and j. The constant a is set to one, to obtain the triangular sharing

function. The niche radius � s is determined according to the method introduced by

Jelasity [40], where the niche radius is defined as a function r. The function r is

defined by the equation

)1,0(,)0()(∈= ββ irir ,

where i represents the layer at which the search is performed. The method for

determining the constant � is described in section 2.3.1. This function reduces at

each layer, and at the final layer the niche radius is equal to one. In the problems

tested during this implementation, the niche radius became too small after the

third layer of the network, and the genetic algorithm was not able to reach the

optimal solution. Therefore, the niche radius is reduced only once for the second

layer, and is kept constant for subsequent layers.

The selection of members of the population to be reproduced in the following

generation is performed with the tournament selection operator. The tournament

selection operator has been criticised when used with the fitness sharing scheme.

However, when the tournament selection operator is used with a relatively high

selection pressure (k = 6), the results obtained are satisfactory. The performance

of the niched genetic algorithm was also tested with the use of the roulette wheel

selection operator, implemented with stochastic universal sampling (SUS) as

suggested in [64]. The tournament selection operator outperformed the SUS

selection method in all cases.

4.2.4 Crossover & Mutation

Crossover is implemented using the 2-point crossover operator. It has been

suggested to use mating restriction schemes, to avoid the formation of lethal

offspring [42], [64]. A mating scheme proposed by Deb and used in [42] allows

 Chapter 4 - Results

80

recombination between members whose distance is less than a dissimilarity

threshold. This mating restriction scheme was tested in the implementation of the

niched genetic algorithm, but crossover between randomly selected parents gave

better results. The standard bit mutation operator was implemented.

4.2.5 Elitism

It is possible for a GA, after the crossover and mutation operators are applied, to

result to worse solutions. To prevent this, the elitist operator was implemented.

The elitist operator checks if the best peak value detected in the current population

is better or worse than the best peak value of the previous population. If it is

worse than the best peak value in the previous generation, then the worst members

of the current population are replaced by the peak values of the previous

population.

4.3 Simulation results

4.3.1 Sunspot Series

The first set of experiments was conducted on monthly sunspot numbers, recorded

by the Sunspot Index Data Center (SIDC), from January 1749 to July 1999. These

numbers are indicative of the average relative number of sunspots observed every

day of the month. The solar energy output of the sun ionises the particles in the

ionosphere. In result, the solar energy output of the sun determines which

frequencies will pass through the ionosphere and which frequencies will bounce

back to the earth. The prediction of the solar activities is therefore essential to

organisations planning long-range high frequency communication links and

space-related activities. The sunspot time series has been classified as quasi-

periodic, and it has been found that the period varies between 7 to 16 years with

irregular amplitudes, making the time series hard to predict.

 Chapter 4 - Results

81

The objective of the experiment is to generate a single-step prediction based on

past observations. The data were normalised to take values from zero to one,

before using them as input data to the polynomial neural networks. The input

pattern was assigned as (x(t-1), x(t-2), x(t-3)) and the desired output was

))3(),2(),1((()(−−−= txtxtxftx .

From the 3000 available data points, 500 points (2000 to 2500) were used for the

validation of potential models. The experiments were run with a population size

of 100 for 500 generations, with tournament size 6, probability of crossover 0.9

and probability of mutation 0.01.

GBSON resulted to a network with four layers to model the sunspot series. The

polynomial neural network constructed by GBSON is shown in Figure 4.2. The

network nodes at each layer are shown in ascending order, according to their PSE.

Thus, nodes at the top are the ones with the smallest PSE for each layer. The most

significant term in the partial descriptions,

22
jijiji fxexxdxcxbxay +++++= ,

 of the model was the term xj and the less significant term was the constant term.

The past values of the sunspot series, (x(t-1), x(t-2), x(t-3)), contributed equally to

obtain the final model.

x1

x2

x3

z1

z2

z3

z4

w1

w2

w3

q1

q2

y

Figure 4.2 Network obtained for the sunspot series by GBSON.

 Chapter 4 - Results

82

The results of the prediction can be seen in Figure 4.3. The actual error of the

prediction is shown in Figure 4.4. The percent square error (PSE) over the whole

data set is 0.057589 and the root mean square error (RMSE) is 0.004167. The PSE

over the validation data set is 0.052777. The difference of the PSE over the whole

data set and the validation data set is small (0.004812), and thus the model

obtained performs with approximately the same accuracy in data points that have

not been used in any part of the modelling process.

 Chapter 4 - Results

83

Figure 4.3 The actual and predicted with GBSON sunspot time series.

Figure 4.4 The actual error for each point of the prediction with GBSON of the

sunspot time series.

 actual time series

 predicted time series

 Chapter 4 - Results

84

4.3.2 Lorentz Attractor

Edward Lorentz obtained the Lorentz attractor system, in his attempt to model

how an air current rises and falls while it is heated by the sun. The Lorentz

attractor system is defined by the following three ordinary differential equations.

)()()(
)(

)()()()(
)(

)()(
)(

tytxtbz
dt

tdz

tytxtrxty
dt

tdy

tytx
dt

tdx

+−=

−+−=

−= σσ

The Lorentz attractor system has also been used to model a far-infrared NH3 laser

that generates chaotic intensity fluctuations [41]. The far-infrared NH3 laser is

described by exactly the same equations, only the variables and constants have

different physical meaning.

The time series used in this experiment, is the x-component in the Lorentz

equations. The data were generated by solving the system of differential

equations, that describe the Lorenz attractor, with the initial conditions of � = 10,

r = 50 and b = 8/3. The data were again normalised to take values from zero to

one, before they were used as inputs to the polynomial neural networks.

The objective is to make one-step ahead prediction. The prediction is based on

four past values (x(t-1), x(t-2), x(t-3), x(t-4)) and thus the output pattern is

))4(),3(),2(),1((()(−−−−= txtxtxtxftx .

The experiments were performed with 100 members in each population for 500

generations, with tournament size 6, probability of crossover 0.95 and probability

of mutation 0.03. The data points 2000 to 2500 were used for model validation.

The network constructed by the GBSON method to model the Lorentz attractor

has eight layers, and it is shown in Figure 4.5. The network nodes at each layer

are shown in ascending order, according to their PSE. Thus, nodes with the

smallest PSE for each layer are at the left, and nodes with the highest PSE for

each layer are at the right. The most significant term in the partial descriptions,

 Chapter 4 - Results

85

22
jijiji fxexxdxcxbxay +++++= ,

 of the model was the term 2
ix and the less significant term was the constant term.

The input variables x3 and x4, were the most significant variables in the model.

z1 z2 z3 z4 z5 z6 z7 z8

x1 x2 x3 x4

w1 w2 w3 w4 w5 w6 w7

q1 q2 q3 q4 q5 q6

r1 r2 r3 r4 r5

s1 s2 s3 s4

t1 t2 t3

u1 u2

y

Figure 4.5 Network obtained for the Lorentz attractor by GBSON.

The results of the prediction and the actual system can be seen in Figure 4.6. The

actual error of the prediction for each data point is shown in Figure 4.7. The PSE

over the whole data set is 0.000244 and the RMSE is 0.000050. The PSE over the

validation data set is 0.000231. As with the sunspot series, the difference of the

PSE over the whole data set and the validation data set is small, and thus the

generalisation of the network is very good.

 Chapter 4 - Results

86

Figure 4.6 The predicted with GBSON and actual Lorentz attractor system.

Figure 4.7 The actual error for each data point obtained from the prediction of the

Lorentz attractor system with GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

87

4.3.3 Exchange Rates

The last set of data to test the GBSON method, is the exchange rates for the

British pound, the Canadian dollar, the Deutsche mark, the Japanese yen and the

Swiss franc against the U.S. dollar. The data used are the daily observed exchange

rates for all the above mentioned currencies from the 1st of June 1973 to the 21st of

May 1987. The data were again normalised to take values from zero to one, before

they were used as inputs to the polynomial neural networks.

The objective is to make one-step ahead prediction. The three past values were

used as an input pattern, and thus the output pattern is

))3(),2(),1((()(−−−= txtxtxftx .

The simulations were run with a population of size 100 for 500 generations with

size of tournament 6, probability of crossover 0.95 and probability of mutation

0.03. The data points from 0 to 2500 were used for model validation.

The networks constructed by GBSON to model the exchange rates of all the

currencies against the U.S. dollar, have one layer, except for the network used to

model the Deutsche mark against the U.S. dollar that has three layers. The

network used to model the exchange rates of the Deutsche mark against the U.S.

dollar is shown in Figure 4.8. The models for the exchange rates of each currency

are given below.

Britsh pound against U.S. dollar:

2
2

2
22222 1015.00784.11946.19976.00192.20079.0 xxxxxxy ++−−+−=

Canadian dollar against U.S. dollar:

2
2

2
22222 8187.06248.02953.02842.01060.10776.0 xxxxxxy −++−+=

Deutsche mark against U.S. dollar:

2
2

2
323231 0605.00688.02973.00928.05891.02041.0 xxxxxxz −++−+=

2
3

2
333332 0589.00696.02973.00928.05891.02041.0 xxxxxxz −++−+=

2
2

2
121211 7571.009380.06958.05584.16176.00242.0 zzzzzzq −+++−=

 Chapter 4 - Results

88

2
1

2
11111 0363.00095.14945.07956.20011.13239.0 qqqqqqy +−++−−=

Japanese yen against U.S. dollar:

2
2

2
22222 8416.03770.16805.04567.16224.20463.0 xxxxxxy −+−−+−=

Swiss franc against U.S. dollar:

2
2

2
22222 4425.11410.13707.21243.08191.01055.0 xxxxxxy ++−−+=

x1

x2

x3

z1

z2

z3

q1

q2

y

Figure 4.8 Network obtained for the exchange rates of the Deutsche mark against

the U.S. dollar by GBSON.

The prediction results for all the currencies along with the actual time series, and

the actual error of the prediction for each data point are shown in Figures 4.9 to

4.18. The PSE for the whole data set for the British pound is 0.000035, for the

Canadian dollar it is 0.000005, for the Deutsche mark it is 0.000052, for the

Japanese yen it is 0.000043 and for the Swiss franc it is 0.000102. The

corresponding RMSE for each currency is 0.000020, 0.000004, 0.000029,

0.000014 and 0.000048, respectively. The generalisation of the models obtained

was not as good as in the previous experiments. The models for the British pound,

the Canadian dollar and the Deutsche mark, gave rise to a PSE for the new data

set, double of the one for the validation set. The models for the Japanese yen and

the Swiss franc generalised well over the new data set, and gave rise to a smaller

PSE for this set than the one for the validation set.

 Chapter 4 - Results

89

Figure 4.9 The actual and predicted with GBSON exchange rates for the British

pound against the U.S. dollar.

Figure 4.10 The actual error for each point of the exchange rates of the British

pound against the U.S. dollar predicted with the GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

90

Figure 4.11 The actual and predicted with GBSON exchange rates for the

Canadian dollar against the U.S. dollar.

Figure 4.12 The actual error for each point of the exchange rates of the Canadian

dollar against the U.S. dollar predicted with the GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

91

Figure 4.13 The actual and predicted with GBSON exchange rates for the

Deutsche mark against the U.S. dollar.

Figure 4.14 The actual error for each point of the exchange rates of the Deutsche

mark against the U.S. dollar predicted with the GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

92

Figure 4.15 The actual and predicted with GBSON exchange rates for the

Japanese yen against the U.S. dollar.

Figure 4.16 The actual error for each point of the exchange rates of the Japanese

yen against the U.S. dollar predicted with the GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

93

Figure 4.17 The actual and predicted with GBSON exchange rates for the Swiss

franc against the U.S. dollar.

Figure 4.18 The actual error for each point of the exchange rates of the Swiss

franc against the U.S. dollar predicted with the GBSON.

 actual time series

 predicted time series

 Chapter 4 - Results

94

4.4 Comparison Of Results With The GMDH Algorithm

The simulation results presented in the previous section are compared with the

results obtained using the GMDH COMBI algorithm described in section 3.4.1.

To allow better comparison of the results obtained using the GBSON and COMBI

algorithms, the same number of data was used for training and validation.

Therefore, in all time series tested, the first 2000 points are used for training, the

following 500 points are used for validation and the last 500 points are used for

testing the model obtained in data that have not been used in any part of the

modelling process. The model's fitness is based on the percent square error as in

the GBSON method.

4.4.1 Sunspot Series

The input pattern was assigned as (x(t-1), x(t-2), x(t-3)) and thus the output pattern

is

))3(),2(),1((()(−−−= txtxtxftx ,

as in the GBSON method.

The algorithm resulted to a network with two layers, and its structure can be seen

in Figure 4.19. The partial descriptions of the model are

2
3

2
131311 2732.01128.00458.06676.03736.00032.0 xxxxxxz −+−++= ,

2
3

2
232322 0507.00070.0268.06144.04368.00033.0 xxxxxxz +−−++= ,

and the output of the network is given by

2
2

2
12121 4760.04411.00092.02959.06962.00007.0 zzzzzzy +−+++−= .

The percent square error (PSE) and the root mean square error (RMSE) over the

whole data set are 0.061066 and 0.004419, respectively. The PSE and RMSE for

each of the data sets for the COMBI and GBSON algorithms, are summarised in

Table 4.1. The actual time series as well as the output generated by the network

 Chapter 4 - Results

95

constructed by the COMBI algorithm is shown in Figure 4.20. The actual error for

each point in the data set is shown in Figure 4.21.

PSE

whole set

PSE

Training set

PSE

Validation

set

PSE

new data set

RMSE

Whole set

COMBI 0.061066 0.068587 0.063761 0.051060 0.004419

GBSON 0.057589 0.071203 0.052777 0.038802 0.004167

Table 4.1 Comparison of the results for the sunspot time series.

x1

x2

x3

z1

yz2

z3

Figure 4.19 Network obtained for the sunspot series by COMBI.

The network obtained with the COMBI algorithm is less complex than the one

obtained with the GBSON method. Nevertheless, the results obtained with the

GBSON method are approximately 6% better for all the data points from the

results obtained with the COMBI. In addition, the prediction over the new data set

is 24% better. The only data set that the COMBI predicted with a smaller error, is

the training set. This set though, is a new data set for the GBSON method, since

the parameters are determined with a GA, and there is no training set for the

GBSON. The GBSON method used only the points in the validation set to

determine the fitness of solutions obtained by the GA. As a result, the GBSON

algorithm generalises better than the COMBI algorithm.

 Chapter 4 - Results

96

Figure 4.20 The actual sunspot time series and the prediction with COMBI.

Figure 4.21 The actual error for each point of the sunspot time series predicted

with COMBI.

 actual time series

 predicted time series

 Chapter 4 - Results

97

4.4.2 Lorenz Attractor

For the Lorentz attractor the input pattern was (x(t-1), x(t-2), x(t-3), x(t-4)) and

thus the output pattern is

))4(),3(),2(),1((()(−−−−= txtxtxtxftx ,

as in the GBSON method.

The COMBI algorithm converged to a network with two layers, shown in Figure

4.22. The partial descriptions of the model are

2
4

2
343431 3664.01971.01629.09106.19372.00127.0 xxxxxxz −+++−= ,

2
3

2
232323 8348.04472.03694.06571.27343.10368.0 xxxxxxz −+++−= ,

and the output of the network is given by

2
3

2
13131 4166.02160.01995.03197.03140.10023.0 zzzzzzy +−−−+= .

x1

x2

x3

x4

z1

z2

z3

z4

z5

z6

y

Figure 4.22 Network obtained for the Lorenz attractor by COMBI.

 Chapter 4 - Results

98

This network predicted the Lorentz attractor system with a PSE over the whole

data set of 0.006652. The RMSE for the whole data set again was 0.001377. The

actual system and its prediction are shown in Figure 4.23. The actual error of the

prediction can be seen in Figure 4.24.

The comparison between the prediction achieved with the COMBI and GBSON

algorithms is summarised in Table 4.2. The complexity of the model obtained

with the GBSON method has increased considerably, it has six more layers in the

network, but the results obtained are approximately 95% better for all data sets

compared to the ones obtained with COMBI.

PSE

whole set

PSE

Training set

PSE

validation set

PSE

New data set

RMSE

whole set

COMBI 0.006652 0.006535 0.007448 0.006471 0.001377

GBSON 0.000244 0.000255 0.000231 0.000207 0.000050

Table 4.2 Comparison of the results for the Lorenz attractor system.

 Chapter 4 - Results

99

Figure 4.23 The actual and predicted with COMBI Lorentz attractor system.

Figure 4.24 The actual error for each point of the Lorentz attractor predicted with

COMBI.

 actual time series

 predicted time series

 Chapter 4 - Results

100

4.4.3 Exchange Rates

The prediction of the exchange rates of the British pound, the Canadian dollar, the

Deutsche mark, the Japanese yen and the Swiss franc against the U.S. dollar, was

based on three past values. Thus, the output pattern is

))3(),2(),1((()(−−−= txtxtxftx .

The COMBI algorithm converged to networks with only one layer, to model the

exchange rates of all the currencies against the U.S. dollar. The models for the

exchange rates of each currency are given below.

British pound against U.S. dollar:

2
3

2
23232 3084.35967.17255.18790.01417.00076.0 xxxxxxy +−−++−=

Canadian dollar against U.S. dollar:

2
3

2
13131 5017.74242.30526.44500.05052.00199.0 xxxxxxy +−−++=

Deutsche mark against U.S. dollar:

2
3

2
23232 7683.23031.14806.18330.01908.00088.0 xxxxxxy +−−++−=

Japanese Yen against U.S. dollar:

2
3

2
23232 0644.49295.11607.28193.02104.00082.0 xxxxxxy +−−++−=

Swiss franc against U.S. dollar:

2
3

2
23232 9169.23356.16010.17735.02532.00083.0 xxxxxxy +−−++−=

The results of the prediction of the exchange rates along with the actual values, and

the actual error of the prediction, are shown in Figures 4.25 to 4.34, for all the

currencies. The comparison of these results with the results obtained with the GBSON

method is summarised in Tables 4.3 to 4.7.

 Chapter 4 - Results

101

PSE

Whole set

PSE

training set

PSE

validation set

PSE

new data set

RMSE

whole set

COMBI 0.000035 0.000028 0.000057 0.000060 0.000020

GBSON 0.000035 0.000028 0.000059 0.000060 0.000020

Table 4.3 Comparison of the results for the exchange rates for the British pound

against the U.S. dollar.

PSE

Whole set

PSE

training set

PSE

Validation

set

PSE

new data set

RMSE

whole set

COMBI 0.000005 0.000004 0.000007 0.000006 0.000003

GBSON 0.000005 0.000004 0.000007 0.000009 0.000004

Table 4.4 Comparison of the results for the exchange rates for the Canadian dollar

against the U.S. dollar.

PSE

Whole set

PSE

training set

PSE

validation set

PSE

new data set

RMSE

whole set

COMBI 0.000045 0.000043 0.000051 0.000056 0.000025

GBSON 0.000052 0.000046 0.000053 0.000089 0.000029

Table 4.5 Comparison of the results for the exchange rates for the Deutsche mark

against the U.S. dollar.

PSE

Whole set

PSE

training set

PSE

validation set

PSE

new data set

RMSE

whole set

COMBI 0.000041 0.000041 0.000055 0.000025 0.000013

GBSON 0.000043 0.000043 0.000057 0.000028 0.000014

Table 4.6 Comparison of the results for the exchange rates for the Japanese yen

against the U.S. dollar.

 Chapter 4 - Results

102

PSE

Whole set

PSE

training set

PSE

validation set

PSE

new data set

RMSE

Whole set

COMBI 0.000069 0.000071 0.000070 0.000056 0.000032

GBSON 0.000102 0.000110 0.000094 0.000070 0.000048

Table 4.7 Comparison of the results for the exchange rates for the Swiss franc against

the U.S. dollar.

The results obtained, with both methods, for the British pound exchange rates are

approximately the same. Both methods could not generalise well, and there is a

considerable increase in the PSE over the new data set. The results obtained for the

Canadian dollar exchange rates, are also approximately the same, but the COMBI

algorithm generalised better than the GBSON algorithm. The results obtained for the

Japanese yen exchange rates with COMBI are slightly better than the ones obtained

with GBSON, but both methods could not generalise well. The results obtained for

the Deutsche mark and Swiss franc exchange rates with COMBI were considerably

better than the ones with GBSON. In addition, the model obtained by COMBI for the

Swiss franc exchange rates generalised well.

It should also be noted that the models obtained by the COMBI algorithm used the

past variables x2 and x3, except for the model for the Canadian dollar exchange rates.

The GBSON algorithm resulted to models that use only the past variable x2, except

for the model for the Deutsche mark exchange rates.

 Chapter 4 - Results

103

Figure 4.25 The actual and predicted with COMBI exchange rates for the British

pound against the U.S. dollar.

Figure 4.26 The actual error for each point of the exchange rates of the British pound

against the U.S dollar predicted with the COMBI.

 actual time series

 predicted time series

 Chapter 4 - Results

104

Figure 4.27 The actual and predicted with COMBI exchange rates for the Canadian

dollar against the U.S. dollar.

Figure 4.28 The actual error for each point of the exchange rates of the Canadian

dollar against the U.S. dollar predicted with the COMBI.

 Chapter 4 - Results

105

Figure 4.29 The actual and predicted with COMBI exchange rates for the Deutsche

mark against the U.S. dollar.

Figure 4.30 The actual error for each point of the exchange rates of the Deutsche

mark against the U.S. dollar predicted with the COMBI.

 Chapter 4 - Results

106

Figure 4.31 The actual and predicted with COMBI exchange rates for the Japanese

yen against the U.S. dollar.

Figure 4.32 The actual error for each point of the exchange rates of the Japanese yen

against the U.S. dollar predicted with the COMBI.

 Chapter 4 - Results

107

Figure 4.33 The actual and predicted with COMBI exchange rates for the Swiss franc

against the U.S. dollar.

Figure 4.34 The actual error for each point of the exchange rates of the Swiss franc

against the U.S. dollar predicted with the COMBI.

 Chapter 4 - Results

108

4.5 Summary

This chapter presented the method used, based on the GBSON method, to solve the

time series prediction problem. Following, the results obtained with this method for

the sunspot time series, the Lorentz attractor and the exchange rates for the British

pound, the Canadian dollar, the Deutsche mark, the Japanese yen and the Swiss franc

against the U.S. dollar, were presented. Finally, the results with the GBSON method

were compared with the results obtained using the GMDH algorithm COMBI, for the

same problems.

 Chapter 5 - Conclusions & Further Work

109

CHAPTER 5

CONCLUSIONS AND FURTHER WORK

5.1 Conclusions

This dissertation presented an overview of the work carried out for the project titled

"Time Series Prediction using Evolving Polynomial Neural Networks". The aim of

this dissertation project was to determine the structure and weights of a polynomial

neural network using evolutionary computing methods and apply it to the time series

prediction problem.

First, the various evolutionary computing methods were studied. These methods were

classified into three categories: Genetic Algorithms, Niched Genetic Algorithms and

Evolutionary Algorithms. The currently used evolutionary computing methods for

neural networks optimisation were also investigated. Following, the procedure for

time series prediction was outlined. The steps identified in this procedure were:

collection of data, formation of candidate models set, selection of criterion of model

fitness, model identification and finally model validation. The most commonly used

linear, non-linear and neural network models were presented. Some methods for

measuring the prediction accuracy were also identified. Then, the Group Method of

Data Handling (GMDH) algorithms were analysed. Finally, a hybrid method of

GMDH and GA, the Genetics-Based Self-Organising Network (GBSON) method for

time series prediction was presented.

The method implemented for this dissertation project was based on the GBSON

method. The main problems identified in this method by Kargupta and Smith [42]

were credit assignment and co-operation versus competition. In the method

implemented, it was attempted to overcome these problems. The main differences of

the implemented method and the GBSON method introduced in [42] are:

 Chapter 5 - Conclusions & Further Work

110

• Determination of the niche radius;

• Fitness measure of potential solutions;

• Incorporating the mechanism of elitism;

• Selection mechanism;

• No use of mating restriction schemes;

• Crossover operator.

The implemented method was tested on the sunspot time series, the Lorentz attractor

system and the exchange rates for various currencies. The results of this method,

presented in section 4.3, were compared with the results obtained with the GMDH

algorithm COMBI. In general, the COMBI algorithm produced simple models for the

above mentioned problems. Although the results obtained with COMBI were good, its

performance showed that it has not the ability to combine the partial descriptions of

the model, obtained in the first layers of the network, to further reduce the prediction

error. On the contrary, the GBSON algorithm showed that it has the ability to

efficiently combine simple partial descriptions to produce complex models. This

ability of the GBSON algorithm was best seen with the model obtained for the

Lorentz attractor system. Another feature of the GBSON algorithm is that it exhibited

good generalisation for the problems of the sunspot time series and the Lorentz

attractor system. Although it used only 500 data points for validation purposes, it

generalised better than the COMBI algorithm that used 2000 points for training and

500 points for validation. In conclusion, it can be said that the GBSON algorithm

gave very encouraging results and has the potential for further improvements.

5.2 Further Work

The results obtained with the implemented method are very encouraging. In all

problems tested there was a decrease in the prediction error compared to the GMDH

algorithm COMBI. Although the results are encouraging, the problems of credit

assignment and co-operation versus competition still remain.

 Chapter 5 - Conclusions & Further Work

111

One of the most important problems in the GBSON method, is the determination of

the niche radius. Although, in the problems tested in this dissertation project, the way

of determining the niche radius gave good results, it is likely that in other problems it

wont work. It is proposed that a co-evolutionary method, where the niche radius is

evolved along with the potential solutions is used. A scheme like that was

implemented by Goldberg [62] and is described in section 2.3.1.3. It is believed that a

scheme like that will solve the problem of determining the niche radius.

Another problem is the selection of the reproduction operator. The tournament

selection scheme in this implementation gave satisfactory results, but it has been

criticised in the literature when used with shared fitness schemes [58], [64].

Alternative selection schemes can be tested with the shared fitness scheme. The

Restricted Competition Selection (RCS) [43] scheme described in section 2.3.3,

produced stable sub-populations and gave good preliminary results.

An alternative approach would be to use a niched genetic algorithm that does not

incorporate the fitness sharing scheme and thus the determination of a niche radius.

Approaches like that are the crowding methods described in section 2.3.2 and the

clearing method described in section 2.3.4.

 References

112

REFERENCES

[1] Anderson O. D., Time series analysis and forecasting, Butterworths, 1976.

[2] Angeline P. J., Saunders G. M., Pollack J. B., An evolutionary algorithm that

constructs recurrent neural networks, IEEE Transactions on Neural Networks, Vol. 5,

No. 1, pp. 54-65,1994.

[3] Back T., Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms, Oxford University Press, 1996.

[4] Baker J. E., Adaptive selection methods for genetic algorithms, Proceedings of

the First International Conference on Genetic Algorithms, pp. 101-111, 1985.

[5] Baluja S., Evolution of an artificial neural network based autonomous land

vehicle controller, IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, Vol. 26, No.3, pp. 450-463,1996.

[6] Belogurov V. P., A criterion of model suitability for forecasting quantitative

processes, Soviet Journal of Automation and Information Sciences, Vol. 23, No. 3,

pp. 21-25, 1990.

[7] Bose N. K., Liang P., Neural network fundamentals with graphs, algorithms

and applications, McGraw-Hill, 1996.

[8] Box G. E. P., Jenkins G. M., Time series analysis: forecasting and control,

Holden-Day, 1976.

[9] Brockwell P. J., Davis R. A., Time series: theory and methods, Springer, 2nd

Edition, 1991.

 References

113

[10] Carse B., Fogarty T. C., Fast evolutionary learning of minimal radial basis

function neural networks using a genetic algorithm, Lecture Notes in Computer

Science, Vol. 1143, pp. 1-22, 1996.

[11] Carse B., Fogarty T. C., Tackling the "curse of dimensionality" of radial basis

functional neural networks using a genetic algorithm, Lecture Note in Computer

Science, Vol. 1141, pp. 710-719, 1996.

[12] Chen S., Smith S. F., Putting the "genetics" back into genetic algorithms,

Foundations of Genetic Algorithms 5, Morgan Kaufmann, 1999.

[13] Cheng A. C. C., Guan L., A combined evolution method for associative

memory networks, Neural Networks, Vol. 11, No. 5, pp. 785-792, 1998.

[14] Cichocki A., Unbehauen R., Neural networks for optimization and signal

processing, Wiley, 1993

[15] Coli M., Gennuso G., Palarazzi P., A new crossover operator for genetic

algorithms, Proceedings of 1996 IEEE International Conference on Evolutionary

Computation (ICEC '96), pp. 201-206, 1996.

[16] De Falco I., Iazzetta A., Natale P., Tarantino E., Evolutionary neural networks

for non-linear dynamics modeling, Lecture Notes in Computer Science, Vol. 1498,

pp. 593-602, 1998.

[17] Deb, K., Genetic algorithms for function optimization, Genetic Algorithms

and Soft Computing, pp. 3-29, 1996.

[18] Eshelman L. J., Caruana R. A., Schaffer J.D., Biases in the crossover

landscape, Proceedings of the Third International Conference on Genetic Algorithms,

Morgan Kaufmann, pp.10-19, 1989.

[19] Farlow S. J., The GMDH algorithm, Self-Organizing Methods in Modeling,

pp. 1-24, 1984.

 References

114

[20] Farnum N. R., Stanton L. W., Quantitative forecasting methods, PWS-KENT,

1989.

[21] Figueira-Pujol J. C., Poli R., Evolving neural networks using a dual

representation with a combined crossover operator, Proceedings of the IEEE

Conference on Evolutionary Computation, pp. 416-421, 1998.

[22] Figueira-Pujol J. C., Poli R., Evolving the topology and the weights of neural

networks using a dual representation, Applied Intelligence, Vol. 8, No. 1, pp. 73-84,

1998.

[23] Fogel D. B., An introduction to simulated evolutionary optimization, IEEE

Transactions on Neural Networks, Vol. 5, No. 1, pp. 3-14, 1994.

[24] Fogel D. B., Fogel L. J., Porto V. W., Evolving Neural Networks, Biological

Cybernetics, Vol. 63, pp. 487-493, 1990.

[25] Fukumi M., Akamatsu N., Rule extraction from neural networks trained using

evolutionary algorithms with deterministic mutation, Proceedings of the IEEE

Conference on Evolutionary Computation, pp. 686-689, 1998.

[26] Fulcher G. E., Brown D. E., A polynomial network for predicting temperature

distributions, IEEE Transactions on Neural Networks, Vol. 5, No. 3, pp. 372-379,

1994.

[27] Goldberg D. E., Deb K., A comparative analysis of selection schemes used in

genetic algorithms, Foundations of Genetic Algorithms, Morgan Kaufmann, pp. 69-

93, 1991.

[28] Goldberg D. E., Genetic algorithms in search, optimization, and machine

learning, Addison-Wesley, 1989.

 References

115

[29] Goldberg D.E., An analysis of Boltzmann tournament selection, IlliGAL

Report No. 94007, Urbana: University of Illinois at Urbana-Champaign, Illinois

Genetic Algorithms Laboratory, 1994.

[30] Gomez-Ramirez E., Poznyak A. S., Structure adaptation of polynomial

stochastic neural nets using learning automata technique, IEEE International

Conference on Neural Networks-Conference Proceedings, Vol. 1, pp. 390-395,1998.

[31] Harvey A. C., Time series models, Philip Allan, 1981.

[32] Holland J. H., Adaptation in natural and artificial systems, University of

Michigan Press, 1975.

[33] Horn J., The nature of niching: genetic algorithms and the evolution of

optimal, cooperative populations, IlliGAL Report No. 97008, Urbana: University of

Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, 1997.

[34] Ivakhnenko A. G, An inductive sorting method for the forecasting of

multidimensional random processes and events with the help of analogues forecast

complexing, Pattern Recognition and Image Analysis, Vol. 4, No. 2, pp. 177-188,

1994.

[35] Ivakhnenko A. G., Muller J. A., Parametric and non-parametric selection

procedures in experimental system analysis, System Analysis Modeling and

Simulation (SAMS), Vol. 9, pp. 157-175, 1992.

[36] Ivakhnenko A. G., Muller J. A., Self-organisation of nets of active neurons,

System Analysis Modeling and Simulation (SAMS), Vol. 20, No. 1-2, pp.29-50,

1995.

[37] Ivakhnenko A. G., Osipenko V. V., Algorithms of transformation of

probability characteristics into deterministic forecast, Soviet Journal of Automation

and Information Sciences, Vol. 15, No. 2, pp. 7-15, 1982.

 References

116

[38] Ivakhnenko A. G., Petukhova S.A., Objective choice of optimal clustering of

data sampling under non-robust random disturbances compensation, Soviet Journal of

Automation and Information Sciences, Vol. 26, No. 4, pp. 58-65, 1993.

[39] Ivakhnenko G. A., Objective system analysis algorithm and its perfection by

parallel computing, Glushkov Institute of Cybernetics, Kiev, Ukraina, 1995.

[40] Jelasity M., Dombi J., GAS, a concept on modeling species in genetic

algortihms, Artificial Intelligence, Vol. 99, No. 1, pp. 1-19, 1998.

[41] Kantz H., Schreiber T., Nonlinear time series analysis, Cambridge University

Press, 1997.

[42] Kargupta H., Smith R. E., System identification with evolving polynomial

networks, Proceedings of the 4th International Conference on Genetic Algorithms, pp.

370-376, 1991.

[43] Lee C.-G., Cho D.-H., Jung H.-K., Niching genetic algorithm with restricted

competition selection for multimodal function optimization, IEEE Transactions on

Magnetics, Vol. 35, No. 3, 1999.

[44] Leondes C. T., Optimization techniques, Academic Press, 1998.

[45] Liu Y., Yao X., Towards designing neural network ensembles by evolution,

Lecture Notes in Computer Science, Vol. 1498, pp. 623-632,1998.

[46] Ljung L., System identification: theory for the user, Prentice Hall, 2nd Edition,

1999.

[47] Mahfoud S. W., Niching methods for genetic algorithms, IlliGAL Report No.

95001, Urbana: University of Illinois at Urbana-Champaign, Illinois Genetic

Algorithms Laboratory, 1995.

 References

117

[48] Man K. F., Tang K. S., Kwong S., Halang W. A., Genetic algorithms for

control and signal processing, Springer-Verlag, 1997.

[49] Maniezzo V., Genetic evolution of the topology and weight distribution of

neural networks, IEEE Transactions on Neural Networks, Vol. 5, No. 1, pp. 39-53,

1994.

[50] McDonell J. R., Waagen D., Evolving recurrent perceptrons for time-series

modeling, IEEE Transactions on Neural Networks, Vol. 5, No. 1, pp. 24-37,1994.

[51] Mengschoel O. J., Goldberg D. E., Probabilistic crowding: deterministic

crowding with probabilistic replacement, IlliGAL Report No. 99004, Urbana:

University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory,

1999.

[52] Michalewicz Z., A perspective on evolutionary computation, Lecture Notes in

Artificial Intelligence, Vol. 956, pp. 73-89, 1995.

[53] Michalewicz Z., Genetic algorithms + data structures = evolution programs,

3rd edition, Springer-Verlag, 1996.

[54] Miller B. L., Shaw M. J., Genetic algorithms with dynamic niche sharing for

multimodal function optimization, IlliGAL Report No. 95010, Urbana: University of

Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, 1995.

[55] Mitchell M., An introduction to genetic algorithms, MIT Press, 1999.

[56] Moriarty D. E., Miikkulainen R., Hierarchical evolution of neural networks,

IEEE International Conference on Neural Networks-Conference Proceedings, Vol. 1,

pp. 428-433, 1998.

[57] Norton J. P., An introduction to identification, Academic Press, 1986.

 References

118

[58] Oei C. K., Goldberg D. E., Chang S. J., Tournament selection, niching, and the

preservation of diversity, IlliGAL Report No. 91011, Urbana: University of Illinois at

Urbana-Champaign, Illinois Genetic Algorithms Laboratory, 1991.

[59] Petrowski A., A clearing procedure as a niching method for a genetic

algorithms, Proceeding of 1996 IEEE International Conference on Evolutionary

Computation (ICEC '96), pp. 798-803, 1996.

[60] Pictet O. V., Dacorogna M. M., Dave R. D., Chopard B., Schirru R.,

Tomassini M., Genetic algorithms with collective sharing for robust optimization in

financial applications, Neural Network World, Vol. 5, No. 4, pp. 573-587, 1995.

[61] Priestley M. B., Non-linear and non-stationary time series analysis, Academic

Press, 1988.

[62] Quagliarella D., Periaux J., Poloni C., Winter G., Generic algorithms and

evolution strategies in engineering and computer science, Wiley, 1998.

[63] Richards N., Moriarty D. E., Miikkulainen R., Evolving neural networks to

play go, Applied Intelligence, Vol. 8, No. 1, pp. 85-96, 1998.

[64] Sareni B., Krahenbuhl L., Fitness sharing and niching methods revisited, IEEE

Transactions on Evolutionary Computation, Vol. 2, No. 3, pp. 97-106, 1998.

[65] Schwefel H. P., Numerical optimization of computer models, Wiley, 1981.

[66] Shin Y., Ghosh J., Ridge polynomial networks, IEEE Transactions on Neural

Networks, Vol. 6, No. 3, pp. 610-622,1995.

[67] Solis F. J., Wets R. J. B., Minimization by random search techniques,

Mathematics of Operations Research, Vol. 6, No. 1, pp. 19-30, 1981.

 References

119

[68] Stepashko V. S., Asymptotic properties of external criteria for model

selection, Soviet Journal of Automation and Information Sciences, Vol. 21, No. 6, pp.

24-32, 1988.

[69] Syswerda G., A study of reproduction in generational and steady state genetic

algorithms, Foundations of Genetic Algorithms, Morgan Kaufmann, pp.94-101, 1991.

[70] Tamaki H., Kita H., Kobayashi S., Multi-objective optimisation by genetic

algorithms: a review, Proceedings of 1996 IEEE International Conference on

Evolutionary Computation (SICE '96), pp. 517-522, 1996.

[71] Taylor M., Lisboa P., Techniques and applications of neural networks, Ellis

Horwood, 1993.

[72] Tenorio M. F., Lee W.-T., Self-organizing network for optimum supervised

learning, IEEE Transactions on Neural Networks, Vol. 1, No. 1, 1990.

[73] Teodorescu D., Time series - information and prediction, Biological

Cybernetics, Vol. 63, No. 6, pp. 477-485, 1990.

[74] Vandaele W., Applied time series and Box-Jenkins models, Academic Press,

1983.

[75] Yao X., Liu Y., A new evolutionary system for evolving artificial neural

networks, IEEE Transactions on Neural Networks, Vol. 8, No. 3, pp. 694-713,1997.

[76] Yao X., Liu Y., Making use of population information in evolutionary

artificial neural networks, IEEE Transactions on Systems, Man, and Cybernetics-Part

B: Cybernetics, Vol. 28, No. 3, pp. 417-425, 1998.

[77] Zhang B.-T., Ohm P., Muhlenbein, Evolutionary neural trees for modelling

and predicting complex systems, Engineering Applications of Artificial Intelligence,

Vol. 10, No. 5, pp. 473-483, 1997.

 References

120

[78] Zhao Q., A general framework for cooperative co-evolutionary algorithms: a

society model, IEEE International Conference on Neural Networks-Conference

Proceedings, Vol.1, pp. 57-62,1998.

[79] http://www.inf.kiev.ua/GMDH-home/GMDH_res.htm

