
Predictive Autonomous

Robot Navigation

Predictive Autonomous Robot Navigation

Amalia Foka

Ph. D. Thesis, Department of Computer Science

University of Crete, May 2005

Copyright c© 2005 Amalia Foka. All Rights Reserved.

A digital version of this thesis can be downloaded from http://dlib.libh.uoc.gr.

Predictive Autonomous Robot Navigation

Amalia Foka

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

Doctoral Committee

Professor Panos Trahanias, Thesis Supervisor

Asssociate Professor Panos Tsakalides, Member

Associate Professor Yannis Stylianou, Member

University of Crete

2005

Áõôüíïìç ÐëïÞãçóç Ñïìðüô ìå Ôå÷íéêÝò Ðñüâëåøçò

Áìáëßá ÖùêÜ

ÄéáôñéâÞ ãéá ôçí ìåñéêÞ åêðëÞñùóç

ôùí áðáéôÞóåùí ãéá ôï ðôõ÷ßï ôïõ

ÄéäÜêôùñ óôçí ÅðéóôÞìç Õðïëïãéóôþí

ÔñéìåëÞò ÅðéôñïðÞ Äéäáêôïñéêïý

ÊáèçãçôÞò ÐÜíïò Ôñá÷áíéÜò, ÅðéâëÝðùí

ÁíáðëçñùôÞò ÊáèçãçôÞò ÐÜíïò Ôóáêáëßäçò, ÌÝëïò

ÁíáðëçñùôÞò ÊáèçãçôÞò ÃéÜííçò Óôõëéáíïý, ÌÝëïò

ÐáíåðéóôÞìéï ÊñÞôçò

2005

UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

Predictive Autonomous Robot Navigation
thesis submited by

Amalia Foka
in partial fulfillment of the requirements for

the PhD degree in Computer Science

Author:

Amalia Foka, Department of Computer Science

Panos Trahanias, Professor, Dep. of Computer Science, University of Crete, Supervisor

Panos Tsakalides, Asssociate Professor, Dep. of Computer Science, University of Crete

Yannis Stylianou, Associate Professor, Dep. of Computer Science, University of Crete

Nikos Koussoulas, Professor, Electrical and Computer Eng. Dep., University of Patras

George Stavrakakis, Professor, Dep. of Electronic and Computer Eng., Technical University

of Crete

Kostas J. Kyriakopoulos, Associate Professor, Mechanical Eng. Dep., National Technical Uni-

versity of Athens

Nikos Vlassis, Assistant Professor, Computer Science Institute, University of Amsterdam

Aproved by:

Dimitris Plexousakis
Chairman of Graduate Studies

Heraklion, May, 2005

Acknowledgements

First of all, I would like to thank my supervisor Prof. Panos Trahanias for his guidance, support

and encouragement. Throughout all my years at the lab and during this thesis work he has

always been a reference of enthusiasm and dedication.

I would also like to express my gratitude to the members of my doctoral committee Assoc.

Prof. Panos Tsakalides and Assoc. Prof. Yannis Stylianou. Prof. Stelios Orphanoudakis has

been a member of my doctoral committee till the near end of my thesis work. His sudden death

forced his replacement in the doctoral committee. Still, his advices and ideas have greatly

contributed to my thesis, a fact that is highly appreciated. Many thanks also to Prof. Nikos

Koussoulas, Prof. George Stavrakakis, Assoc. Prof. Kostas Kyriakopoulos and Assist. Prof.

Nikos Vlassis for travelling to Heraklion to participate to the committee for my thesis defence.

Both the Foundation for Research and Technology�Hellas (FORTH) and the University of

Crete, where this thesis was conducted, have provided a wealth of academic stimuli as well as

a pleasant and creative environment for which I am heartily thankful. FORTH also provided

financial support which is gratefully acknowledged as well.

I would also like to thank my colleges at the Computational Vision and Robotics Laboratory

- FORTH for the friendly atmosphere and the useful discussions that have greatly influenced

this work.

Special thanks go to all my friends and staff of the ICS-FORTH that participated as human

motion models in the experiments I have conducted.

Last but not least, thanks to my family and my friends for their constant support and infinite

patience.

Abstract

A primary goal in robotics research is to provide means for mobile platforms to perform au-

tonomously within their environment. Depending on the task at hand, autonomous performance

can be defined as the execution by the robot, without human intervention, of certain naviga-

tional tasks. In mobile robotics literature, commonly addressed navigation tasks include the

localization, mapping, path planning and obstacle avoidance tasks. Solving any of these tasks is

a hard problem by itself. The reason stems from the inherent complexity associated with both

the robot and its environment, each of them being an extremely complex dynamical system with

uncertainty involved.

In this thesis, we propose a probabilistic framework for mobile robot navigation in dynamic

environments based on the Partially Observable Markov Decision Process (POMDP) model.

The proposed model is able to perform the navigation tasks of localization, path planning and

obstacle avoidance. POMDPs are models for sequential decision making where the world in

which the robot operates is partially observable, i.e. the true underlying robot's state is not

known, and the outcome of actions it executes is modelled probabilistically. As such POMDPs

perform localization and path planning in a probabilistic manner.

POMDPs have the major shortcoming of their extreme computational complexity and hence

they have been mainly used in robotics as high level path planners only. In this thesis, we pro-

pose a novel hierarchical representation of POMDPs, specifically designed for the autonomous

robot navigation problem and termed as the Robot Navigation-Hierarchical POMDP (RN-

HPOMDP). The proposed hierarchical POMDP can efficiently model large real-world environ-

ments and is amenable to real time solution. This is achieved mainly due to the design choice

of modelling the state transition and observation functions dependent only on the robot motion

model and not on the environment as it is commonly used in the POMDP literature. Further-

more, the notion of the reference POMDP (rPOMDP) is introduced that infers the robot motion

model in a very small POMDP and it transfers this information to the hierarchical structure

while being solved. The environment specific information is modelled within the reward func-

tion of the RN-HPOMDP. The employed model is utilized as a unified probabilistic navigation

framework that accommodates for localization, path planning and obstacle avoidance. Hence,

real-time solution of the RN-HPOMDP is essential since no other external modules are utilized

and paths have to be replanned at each time step.

The RN-HPOMDP has been developed for the application of robot navigation in dynamic

real-world environments that are highly populated. Thus, it is desirable for the robot to perform

obstacle avoidance in a manner that resembles the human motion for obstacle avoidance. That

is, the robot should be able to decide the most suitable obstacle avoidance behavior based on

the state of the environment. Therefore, the robot can decide to either perform a detour or

follow a completely new path to the goal and also modify its speed of movement (increase it

or decrease it) to bypass an obstacle or let it move away respectively. Any of the above four

distinct behaviors for obstacle avoidance should be decided well before the robot comes too

close to the obstacle. For that reason, future motion prediction of obstacles is employed. Two

kinds of prediction are utilized: short-term and long-term prediction. Short term prediction

refers to the one-step ahead prediction whereas long-term prediction refers to the prediction of

the final destination point of the obstacle's movement. Both kinds of prediction are integrated

into the reward function of the RN-HPOMDP and the speed decision is performed through a

modified solution of the RN-HPOMDP. As a result, the RN-HPOMDP can decide the optimal

obstacle avoidance behavior based on the current and the predicted state of the environment

without the intervention of any other external module.

Experimental results have shown the applicability and effectiveness of the proposed frame-

work for the navigation task. The robustness and the probabilistic nature of the RN-HPOMDP

as well as the future motion prediction are required to be able to perform efficiently and

effectively in dynamic real-world environments that are highly populated.

Ðåñßëçøç

¸íáò óçìáíôéêüò åñåõíçôéêüò óôü÷ïò óôïí ôïìÝá ôçò ñïìðïôéêÞò åßíáé ç áíÜðôõîç ñïìðüô

ðïõ Ý÷ïõí ôçí äõíáôüôçôá íá ëåéôïõñãïýí áõôüíïìá. Ç áõôüíïìç óõìðåñéöïñÜ ïñßæåôáé óå

ïñéóìÝíåò ðåñéðôþóåéò ùò ç ëåéôïõñãßá ôïõ ñïìðüô ãéá ôçí åêôÝëåóç äéáöüñùí åíåñãåéþí

ðëïÞãçóçò ÷ùñßò ôçí áíèñþðéíç ðáñÝìâáóç. Óôç âéâëéïãñáößá ôùí áõôüíïìùí êéíïýìåíùí

ñïìðüô áíáöÝñïíôáé ùò óõíçèéóìÝíåò ëåéôïõñãßåò ðëïÞãçóçò ç åýñåóç ôçò èÝóçò ôïõ ñïìðüô

(localization), ç ÷áñôïãñÜöçóç ôïõ ðåñéâÜëëïíôïò ÷þñïõ (mapping), ç ó÷åäßáóç äéáäñïìþí

ìÝóá óôï ÷þñï ðñïò áõèáßñåôá ïñéóìÝíåò èÝóåéò/óôü÷ïõò (path planning) êáé ç áðïöõãÞ

åìðïäßùí (obstacle avoidance). Ç ëýóç êÜèå ëåéôïõñãßáò ðëïÞãçóçò ÷ùñéóôÜ åßíáé Ýíá

äýóêïëï ðñüâëçìá áðü ìüíï ôïõ. Áõôü ïöåßëåôáé óôçí Ýìöõôç ðïëõðëïêüôçôá ôüóï ôïõ

÷þñïõ áëëÜ êáé ôïõ ßäéïõ ôïõ ñïìðüô, áöïý êáè' Ýíá áðü áõôÜ åßíáé Ýíá ðïëýðëïêï äõíáìéêü

óýóôçìá ðïõ ÷áñáêôçñßæåôáé áðü áâåâáéüôçôá ãéá ôçí êáôÜóôáóÞ ôïõ êÜèå ÷ñïíéêÞ óôéãìÞ.

Óå áõôÞ ôç äéáôñéâÞ ðñïôåßíåôáé Ýíá ðéèáíïêñáôéêü ðëáßóéï ãéá ôçí áõôüíïìç ðëïÞãçóç

ñïìðüô âáóéæüìåíï óå Ìåñéêþò ÐáñáôçñÞóéìåò ÌáñêïâéáíÝò Äéáäéêáóßåò Áðüöáóçò - ÌÐÌÄÁ

(Partially Observable Markov Decision Processes - POMDPs). Ôï ðñïôåéíüìåíï ìïíôÝëï Ý÷åé

ôçí äõíáôüôçôá íá åêôåëåß ôéò ëåéôïõñãßåò ðëïÞãçóçò ôçò åýñåóçò ôçò èÝóçò ôïõ ñïìðüô, ôïõ

ó÷åäéáóìïý äéáäñïìþí êáèþò êáé áðïöõãÞò åìðïäßùí. Ïé ÌÐÌÄÁ åßíáé ìïíôÝëá ãéá äéá-

äï÷éêÞ ëÞøç áðïöÜóåùí üðïõ ôï ðåñéâÜëëïí óôï ïðïßï ëåéôïõñãåß ôï ñïìðüô åßíáé ìåñéêþò

ðáñáôçñÞóéìï, äçëáäÞ ç ðñáãìáôéêÞ êáôÜóôáóç ôïõ ñïìðüô äåí åßíáé ãíùóôÞ. ÅðéðëÝïí, ôï

áðïôÝëåóìá ôùí åíåñãåéþí ðïõ åêôåëåß ôï ñïìðüô ìïíôåëïðïéïýíôáé ðéèáíïêñáôéêÜ. Óõíåðþò,

ïé ëåéôïõñãßåò ðëïÞãçóçò åêôåëïýíôáé ìå ðéèáíïêñáôéêü ôñüðï.

Ôï âáóéêü ìåéïíÝêôçìá ôùí ÌÐÌÄÁ åßíáé ç åîáéñåôéêÜ ìåãÜëç õðïëïãéóôéêÞ ðïëõðëïêü-

ôçôá ëýóçò ôïõò êáé ãéá áõôü ôï ëüãï Ý÷ïõí åöáñìïóôåß óôçí ñïìðïôéêÞ ìÝ÷ñé óÞìåñá êõñßùò

ùò ìïíôÝëá ãéá ôçí ëÞøç áðïöÜóåùí óå õøçëü åðßðåäï ìüíï. Óå áõôÞ ôç äéáôñéâÞ ðñïôåßíåôáé

ìéá íÝá éåñáñ÷éêÞ áíáðáñÜóôáóç ôùí ÌÐÌÄÁ åéäéêÜ ó÷åäéáóìÝíç ãéá ôï ðñüâëçìá ôçò

áõôüíïìçò ðëïÞãçóçò ñïìðüô ðïõ áðïêáëåßôáé Éåñáñ÷éêÝò ÌÐÌÄÁ - ÑïìðïôéêÞò ÐëïÞãçóçò

(ÉÌÐÌÄÁ-ÑÐ). Ïé ÉÌÐÌÄÁ-ÑÐ Ý÷ïõí ôç äõíáôüôçôá íá áíáðáñéóôïýí ìå áðïäïôéêü ôñüðï

ìåãÜëá ðñáãìáôéêÜ ðåñéâÜëëïíôá êáé ëýíïíôáé óå ðñáãìáôéêü ÷ñüíï. Áõôü åðéôõã÷Üíåôáé

êõñßùò ëüãù ôçò ó÷åäéáóôéêÞò åðéëïãÞò íá ìïíôåëïðïéçèïýí ïé óõíáñôÞóåéò ìåôÜâáóçò (tran-

sition) êáé ðáñáôçñÞóåùí (observation) âÜóç ôïõ ìïíôÝëïõ êßíçóçò ôïõ ñïìðüô êáé áíåîÜñôçôá

áðü ôïí ðåñéâÜëëïí óôï ïðïßï ëåéôïõñãåß, üðùò ãßíåôáé óõíÞèùò óôçí âéâëéïãñáößá ôùí

ÌÐÌÄÁ. ÅðéðëÝïí, åéóÜãåôáé ç Ýííïéá ôçò áíáöïñéêÞò ÌÐÌÄÁ (áÌÐÌÄÁ) ðïõ äéáôçñåß

ôï ìïíôÝëï êßíçóçò ôïõ ñïìðüô ÷ñçóéìïðïéþíôáò ìéá ðïëý ìéêñÞ ÌÐÌÄÁ êáé ôï ìåôáöÝñåé

óôçí éåñáñ÷éêÞ äïìÞ êáôÜ ôçí äéÜñêåéá ôçò ëýóçò ôçò. Ç äïìÞ êáé êáôÜóôáóç ôïõ ðå-

ñéâÜëëïíôïò ìïíôåëïðïéåßôáé óôçí óõíÜñôçóç áíôáìïéâÞò (reward) ôçò ÉÌÐÌÄÁ-ÑÐ. Ôï

ðñïôåéíüìåíï ìïíôÝëï åöáñìüæåôáé ùò Ýíá åíéáßï ðëáßóéï ðëïÞãçóçò ôï ïðïßï äåí ÷ñçóé-

ìïðïéåß åîùôåñéêÜ óõíåñãáæüìåíåò ìïíÜäåò. Ãéá ôçí åðßôåõîç áõôïý ôïõ óôü÷ïõ ç ëýóç ôçò

ÉÌÐÌÄÁ-ÑÐ óå ðñáãìáôéêü ÷ñüíï åßíáé áðáñáßôçôç åö' üóïí ðñÝðåé íá ó÷åäéÜæåé åê íÝïõ óå

êÜèå ÷ñïíéêÞ óôéãìÞ ôï ìïíïðÜôé ðñïò ôïí óôü÷ï êáé êáôÜ óõíÝðåéá íá äéåîÜãåé ôçí ëåéôïõñãßá

ôçò áðïöõãÞò åìðïäßùí.

Ç ÷ñÞóç ôçò ÉÌÐÌÄÁ-ÑÐ ùò åíéáßï ìïíôÝëï ðëïÞãçóçò Ý÷åé ôï ðëåïíÝêôçìá üôé åêìå-

ôáëëåýåôáé ôçí ðéèáíïêñáôéêÞ öýóç ôçò óå üëá ôá åðßðåäá ëåéôïõñãßáò ôçò ðëïÞãçóçò ôï

ïðïßï åßíáé åîáéñåôéêÜ óçìáíôéêü äåäïìÝíçò ôçò áâåâáéüôçôáò ðïõ õðÜñ÷åé óôïõò áéóèçôÞñåò

ôïõ ñïìðüô üðùò êáé óôçí ßäéá ôïõ ôçí êßíçóç. Áíôßèåôá, óôçí ìåãáëýôåñç ðëåéïøçößá ôùí

ìåèüäùí ðëïÞãçóçò ðïõ õðÜñ÷ïõí óôçí âéâëéïãñáößá ÷ñçóéìïðïéïýíôáé ðïëëÝò äéáöïñåôéêÝò

ìïíÜäåò ðïõ åêôåëïýí êÜèå ìéá ëåéôïõñãßá ðëïÞãçóçò. Óå áõôÝò ôéò ìåèüäïõò, óõíáíôÜôáé

óõ÷íÜ ðéèáíïêñáôéêÞ ëýóç ôïõ ðñïâëÞìáôïò ôçò åýñåóçò ôçò èÝóçò ôïõ ñïìðüô êáé ôïõ

ó÷åäéáóìïý ìïíïðáôéþí óå õøçëü åðßðåäï áëëÜ óðáíßùò ëýíåôáé ðéèáíïêñáôéêÜ ôï ðñüâëçìá

ôçò áðïöõãÞò åìðïäßùí. ÅðéðëÝïí, ìå ôçí ÷ñÞóç ôçò ÉÌÐÌÄÁ-ÑÐ ôï ðñüâëçìá ôçò áðïöõãÞò

åìðïäßùí ëýíåôáé êáèïëéêÜ, åö' üóïí ïëüêëçñï ôï ìïíïðÜôé ðñïò ôïí óôü÷ï åðáíáó÷åäéÜæåôáé

óå êÜèå ÷ñïíéêÞ óôéãìÞ. Ïé ðåñéóóüôåñåò ìÝèïäïé áðïöõãÞò åìðïäßùí ðïõ õðÜñ÷ïõí óôçí

âéâëéïãñáößá ëýíïõí ôï ðñüâëçìá ôïðéêÜ, êõñßùò ëüãù ôïõ ìåãÜëïõ õðïëïãéóôéêïý êüóôïõò

ëýóçò.

Ç ÉÌÐÌÄÁ-ÑÐ ó÷åäéÜóôçêå ãéá åöáñìïãÞ óôï ðñüâëçìá ôçò ðëïÞãçóçò óå äõíáìéêÜ

ðñáãìáôéêÜ ðåñéâÜëëïíôá óôá ïðïßá õðÜñ÷åé ðõêíÞ êßíçóç áíèñþðùí. ¸ôóé, åßíáé åðéèõìçôü

ôï ñïìðüô íá åêôåëåß ôçí áðïöõãÞ åìðïäßùí ìå ôñüðï ðáñüìïéï ìå ôïí ïðïßï áðïöåýãïõí

åìðüäéá ïé ßäéïé ïé Üíèñùðïé. ÄçëáäÞ ôï ñïìðüô èá ðñÝðåé íá Ý÷åé ôç äõíáôüôçôá íá

áðïöáóßæåé ôçí êáôÜëëçëç óõìðåñéöïñÜ ãéá áðïöõãÞ åìðïäßùí äåäïìÝíçò ôçò êáôÜóôáóçò

ôïõ ðåñéâÜëëïíôïò. ÅðïìÝíùò, ôï ñïìðüô ìðïñåß íá áðïöáóßóåé íá åêôåëÝóåé ìéá ðáñÜêáìøç

Þ íá áêïëïõèÞóåé Ýíá åíôåëþò êáéíïýñãéï ìïíïðÜôé ðñïò ôïí óôü÷ï ôïõ êáé åðéðëÝïí íá

áõîÞóåé Þ íá ìåéþóåé ôçí ôá÷ýôçôÜ ôïõ ãéá íá ðñïóðåñÜóåé Ýíá åìðüäéï Þ íá ôïõ åðéôñÝøåé

íá ðåñÜóåé, áíôßóôïé÷á. ÊÜèå ìéá áðü ôéò ðáñáðÜíù ôÝóóåñéò óõìðåñéöïñÝò ãéá ôçí áðïöõãÞ

åìðïäßùí èá ðñÝðåé íá áðïöáóéóôåß áñêåôÜ ðñéí öôÜóåé ôï ñïìðüô êïíôÜ óôï åìðüäéï. Ãé'

áõôü ôï ëüãï, ç ÷ñÞóç ðñüâëåøçò ôçò êßíçóçò åìðïäßùí åßíáé áðáñáßôçôç. Åöáñìüæïíôáé

äýï ôýðïé ðñüâëåøçò êßíçóçò: ç âñá÷õðñüèåóìç êáé ç ìáêñïðñüèåóìç ðñüâëåøç êßíçóçò.

Ç âñá÷õðñüèåóìç ðñüâëåøç áíáöÝñåôáé óôçí ðñüâëåøç ôçò èÝóçò ôïõ åìðïäßïõ ôçí áìÝóùò

åðüìåíç ÷ñïíéêÞ óôéãìÞ åíþ ç ìáêñïðñüèåóìç áíáöÝñåôáé óôçí ðñüâëåøç ôïõ ôåëéêïý óçìåßïõ

êßíçóçò ôïõ åìðïäßïõ. Êáé ôá äýï åßäç ðñüâëåøçò åíóùìáôþíïíôáé óôçí óõíÜñôçóç áíôáìïéâÞò

ôçò ÉÌÐÌÄÁ-ÑÐ. Ç ìáêñïðñüèåóìç ðñüâëåøç åðéôõã÷Üíåôáé ïñßæïíôáò ôá åíäéáöÝñïíôá

óçìåßá ôïõ ÷þñïõ (ï ïñéóìüò ôïõò ìðïñåß íá ãßíåé ÷åéñùíáêôéêÜ áðü ôïí ÷ñÞóôç Þ ìÝóù

ìéáò áõôïìáôïðïéçìÝíçò äéáäéêáóßáò åêìÜèçóÞò ôïõò). Óôç äéáäéêáóßá áõôÞ èåùñåßôáé üôé

ïé Üíèñùðïé äåí êéíïýíôáé Üóêïðá ìÝóá óå Ýíáí ÷þñï áëëÜ åðéèõìïýí íá êáôåõèõíèïýí

ðñïò êÜðïéï åíäéáöÝñïí óçìåßï ôïõ ÷þñïõ. Óõíåðþò, ç ìáêñïðñüèåóìç ðñüâëåøç êßíçóçò

ïñßæåôáé ùò ç ðñüâëåøç ôïõ åíäéáöÝñïíôïò óçìåßïõ ðïõ ðñüêåéôáé íá ðñïóåããßóåé Ýíáò

Üíèñùðïò Þ Ýíá Üëëï êéíïýìåíï åìðüäéï. Êáé ôá äýï åßäç ðñüâëåøçò áíáíåþíïíôáé óå

êÜèå ÷ñïíéêÞ óôéãìÞ êáé Ýôóé ðéèáíÜ ëÜèç ìðïñïýí íá äéïñèùèïýí ðïëý ãñÞãïñá êáé íá

ìçí åðçñåÜóïõí ôçí áðüöáóç ôïõ ñïìðüô ãéá ôï ìïíïðÜôé ôï ïðïßï áêïëïõèåß ãéá íá öôÜóåé

óôïí óôü÷ï ôïõ. ÔÝëïò, ç áðüöáóç ãéá ôçí ôá÷ýôçôá ìå ôçí ïðïßá èá êéíçèåß ôï ñïìðüô

åðéôõã÷Üíåôáé ìå ôçí ÷ñÞóç ìéáò ôñïðïðïéçìÝíçò ìåèüäïõ ëýóçò ôçò ÉÌÐÌÄÁ-ÑÐ. Óõíåðþò,

ç ÉÌÐÌÄÁ-ÑÐ ìðïñåß íá áðïöáóßóåé ôçí âÝëôéóôç óõìðåñéöïñÜ ãéá ôçí áðïöõãÞ åìðïäßùí

âÜóç ôçò ôùñéíÞò êáé ðñïâëåðüìåíçò êáôÜóôáóçò ôïõ ðåñéâÜëëïíôïò ÷ùñßò ôçí ðáñÝìâáóç

êáíåíüò Üëëïõ åîùôåñéêïý óôïé÷åßïõ.

Ôï ðñïôåéíüìåíï ðëáßóéï ñïìðïôéêÞò ðëïÞãçóçò äïêéìÜóôçêå óå ðñáãìáôéêÝò óõíèÞêåò

êáé ôá áðïôåëÝóìáôá åðéâåâáéþíïõí ôçí áðïäïôéêüôçôá êáé áðïôåëåóìáôéêüôçôÜ ôïõ. Ç

ðéèáíïêñáôéêÞ öýóç êáèþò êáé ç áêñßâåéá êáé óôáèåñüôçôá ôçò ÉÌÐÌÄÁ-ÑÐ üðùò êáé ç

ðñüâëåøç ôçò êßíçóçò êñßíïíôáé áðáñáßôçôá óôïé÷åßá ãéá ôçí áðïôåëåóìáôéêÞ êáé áðïäïôéêÞ

ðëïÞãçóç óå äõíáìéêÜ ðñáãìáôéêÜ ðåñéâÜëëïíôá ìå ðõêíÞ êßíçóç áíèñþðùí.

Contents

Acknowledgements vii

Abstract ix

Ðåñßëçøç xiii

List of Tables vi

List of Figures viii

List of Symbols xii

List of Abbreviations xvi

1 Introduction 1

1.1 Problem Statement 1

1.2 Practical Interest 5

1.3 Scientific Interest 6

1.4 Proposed Approach 7

1.4.1 Contributions 10

1.4.2 Publications 10

1.5 Thesis Structure 11

2 Background and Literature Review 13

2.1 Obstacle Avoidance 13

2.2 Motion Prediction 17

2.3 Motion Tracking 19

2.4 Robot Motion Planning 23

2.5 Localization 25

2.6 Conclusions 27

3 Sequential Decision Making 29

3.1 Markov Decision Processes (MDPs) 29

3.1.1 Solving Markov Decision Processes 30

3.2 Partially Observable Markov Decision Processes 34

3.2.1 Belief State 34

3.3 Solving POMDPs 37

3.3.1 Complexity of Solving POMDPs 42

3.3.2 Approximation Methods 44

3.4 Learning POMDPs 45

3.5 Conclusions 48

4 Hierarchical POMDPs 49

4.1 POMDP Formulation for Robot Navigation 50

4.2 The RN-HPOMDP Structure 53

4.2.1 The corresponding flat POMDP 53

4.2.2 Determining the number of levels of hierarchy of the RN-HPOMDP 54

4.2.3 Construction of the top-level of the RN-HPOMDP 55

4.2.4 Construction of the intermediate levels of the RN-HPOMDP 56

4.2.5 Construction of the bottom-level of the RN-HPOMDP 58

4.3 The Reference POMDP (rPOMDP) 59

4.3.1 Construction of the rPOMDP 61

4.4 RN-HPOMDP Learning 64

4.5 RN-HPOMDP Planning 65

4.6 Complexity Analysis 69

4.6.1 Approximate solution 70

4.6.2 Exact solution 71

4.7 Comparison With Other HPOMDP Structures 72

4.7.1 Comparison with the Theocharous approach 72

4.7.2 Comparison with the Pineau approach 73

4.7.3 Approximation methods for solving flat POMDPs 74

4.7.4 Computational time comparison 75

4.8 Conclusions 77

5 Motion Prediction and Tracking 79

5.1 Short-Term Prediction 79

5.2 Long-Term Prediction 81

5.2.1 Estimation of a moving object's destination position 83

5.2.2 Map of hot points 85

5.3 Motion Tracking 88

5.3.1 Tracker results 91

5.4 Prediction Integration Into The Model 92

5.5 Conclusions 95

6 POMDP Solution for Controlling the Robot's Speed 97

6.1 Exact Solution 98

6.2 The Projected State 99

6.3 The Modified POMDP Functions 100

6.4 Approximation Methods 104

6.5 Conclusions 105

7 Results 107

7.1 Experimental Configurations 107

7.1.1 Lefkos 108

7.1.2 Simulator 109

7.2 Evaluation of the Learned Model 109

7.3 Results 112

7.3.1 Avoiding obstacles with a detour 113

7.3.2 Avoiding obstacles by following a replanned path 113

7.3.3 Avoiding obstacles by decreasing the robot's speed 113

7.3.4 Avoiding obstacles by increasing the robot's speed 118

7.4 Comparative Results 118

7.5 Conclusions 125

8 Conclusions 127

8.1 Summary 127

8.2 Contributions 129

8.3 Future Work 130

References 135

List of Tables

3.1 MDP value iteration algorithm. 31

3.2 POMDP value iteration algorithm. 39

4.1 Properties of the RN-HPOMDP structure with L levels. 59

4.2 RN-HPOMDP planning 67

4.3 Complexity of solving a POMDP with the approximation methods reviewed in [51]. 75

4.4 Computation time required to solve a HPOMDP with the compared approaches. 75

4.5 Computation time required to solve the RN-HPOMDP with varying grid size and

5 levels. 76

4.6 Computation time required to solve the RN-HPOMDP with varying number of

levels and grid size of 10cm× 10cm. 76

5.1 The algorithm for motion tracking 89

7.1 Lefkos Configuration 108

7.2 Position and orientation accuracy of the learned model. 112

7.3 Type of experiments performed for each configuration of start and goal point. 122

7.4 Overall performance of the proposed approach for each type of experiment per-

formed. 124

List of Figures

3.1 Modelling of a simple navigation task with an MDP. 33

3.2 (a) The forward and (b) backward triggered observation model. 36

3.3 An example policy tree of a POMDP. 38

3.4 The one step POMDP value function for each action. 40

3.5 The complete one step POMDP value function. 40

3.6 The two step policy tree for executing action a1. 42

3.7 The transformed horizon 1 value function for taking action a1 and perceiving each

of the possible observations. 42

3.8 The two step value function for executing action a1 as the initial action. 43

4.1 State space hierarchy decomposition. The figure depicts the decomposition of a top

level state to lower level states. The top level state corresponds to 4 POMDPs at

level 2, each one decomposing the location of the top level state into 4 locations, and

its orientation in one of the ranges denoted by the shaded region of the circles for

each POMDP. This state decomposition continues at lower levels until the desired

discretization of the environment has been reached. 58

4.2 Translation and rotation of the rPOMDP transition probabilities matrix. 62

4.3 Planning with the RN-HPOMDP. 65

5.1 The data set used for NN training. 80

5.2 The results obtained from the trained NN. 81

5.3 The ``hot'' points defined for the FORTH main entrance hall, marked with ``x". 82

5.4 An example of making long-term prediction for an object's movement. 86

5.5 The probability assignment for possible hot points is dependent on the angular

distance of the considered cell and the GDO and its distance from the obstacle's

current position. 87

5.6 The map of ``hot'' points obtained for the FORTH main entrance hall. 88

5.7 Tracking the motion of two persons. 93

5.8 (a) The static and (b) dynamic RGM. Reward discount is performed according to

the obtained long-term prediction. Long-term predictions for hot points present

in the periphery of the field-of-view have low probability, wi, and thus the reward

discount is smaller. 96

6.1 An example policy tree of a POMDP with pairs of actions and speeds. 98

6.2 Definition of the projected state sp. 99

6.3 (a) The static RGM and (b) An example of the robot choosing to move with the

fast velocity. 103

7.1 Lefkos. 109

7.2 Evaluation of the learned RN-HPOMDP model. 111

7.3 The marked locations in the environment where the experimental evaluation of the

RN-HPOMDP model was performed. 112

7.4 Avoiding two moving objects with a detour (I). 114

7.5 Avoiding two moving objects with a detour (II). 115

7.6 Deciding to follow a completely different path (I). 116

7.7 Deciding to follow a completely different path (II). 117

7.8 Avoiding obstacles by decreasing the robot's speed. 119

7.9 Avoiding obstacles by increasing the robot's speed. 120

7.10 An example of how the human motion areas are defined for the comparative ex-

periments performed. 122

List of Symbols

S The finite set of all possible states, s, of the environment an

agent might occupy.

sr The invariant initial state utilized in the rPOMDP.

sp The projected state of the robot utilized for deciding the robot

speed.

A The finite set of actions, a, an agent can execute.

Z The finite set of observations, z, an agent can observe.

T The state transition function.

R The reward function.

O The observation function.

bt The belief state of the robot at time t, representing the discrete

probability distribution over the set of all possible states S .

B The set of all possible belief states.

π A policy obtained by the solution of an MDP.

π∗ An optimal policy.

p A POMDP policy tree.

α-vectors The set of hyperplanes defined by a policy tree p.

Γ The set of all α-vectors.

γ A discount factor that determines how important are the fu-

ture rewards the robot will receive.

V The value function of an MDP or POMDP.

V ∗ The optimal value function.

Q The Q-functions defined for solving MDPs.

φ The desired discretization step of the orientation and action

angles modelled by a POMDP.

d The desired discretization of the grid map modelled by a

POMDP.

L The number of levels of hierarchy in the RN-HPOMDP.

l A level of hierarchy in the RN-HPOMDP.

r The overlapping region defined in bottom level POMDPs of

the RN-HPOMDP.

R The size of the square grid that defines the state space of the

rPOMDP.

|S0| The state space size of the corresponding flat POMDP.

|A0| The action space size of the corresponding flat POMDP.

θp The orientation angle of the state that is decomposed to a

POMDP in the RN-HPOMDP structure.

ap The action angle that is decomposed to a POMDP action set

in the RN-HPOMDP structure.

Λ The maximum angular distance from the GDO.

λ The angular distance from the GDO.

∆ The maximum distance allowed from a cell to be considered

as a hot point.

δ The distance from a candidate hot point.

Ediff(a) The average expected difference of the reward value between

adjacent grid cells for an action angle a.

List of Abbreviations

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

HPOMDP Hierarchical Partially Observable Markov Decision Process

RN-HPOMDP Robot Navigation - Hierarchical Partially Observable Markov

Decision Process

rPOMDP Reference Partially Observable Markov Decision Process

MLS The most likely state heuristic for solving POMDPs.

OGM Occupancy Grid Map

RGM Reward Grid Map

IDC Iterative Dual Correspondence algorithm for scan mathcing.

GDO Global Direction of Obstacle.

HP Hot Point.

1

Introduction

This thesis addresses the problem of a robot navigating efficiently and effectively in crowded

environments. In this introductory chapter, we define the problem, indicate its scientific and

practical significance and outline this thesis work.

1.1 Problem Statement

This thesis concentrates on the problem of a robot navigating in crowded environments in

a efficient and effective manner. This problem involves three main navigation tasks:

• localization, the robot must be aware at all times of its true position in the environment

it operates;

• path planning, decide what the optimal path to its goal point is;

• obstacle avoidance, avoid humans and/or other objects operating in the environment with

manoeuvres that affect the optimality of the path to the goal point the least possible.

2 Chapter 1 : Introduction

The above three tasks are treated in a unified manner in this thesis to obtain an optimal

navigation behavior in crowded environments that attempts to simulate as much as possible the

human behavior.

Human Navigation

For humans the navigation task is eminent. Humans, at least when walking purposively, can

choose the optimal path to reach their destination point without having to put much thought

into all the aspects of the task they are about to perform. The optimality of the chosen path

by humans is commonly taken for granted. Yet, quantitative and qualitative measures can

be employed to assess the optimality of a path executed by a human to reach a destination

point. Quantitative measures are easy to define and in most cases they are indisputable. The

most common quantitative measures are the time taken to reach the destination point and the

distance travelled to the destination position. It is harder to define qualitative measures since

depending on the specific environment where the task is executed each qualitative measure can

have different importance. For example, the qualitative measure of ``politeness'', i.e. whether

a human gives way to other humans, can be employed in an office environment but definitely

not in a high risk environment. The ``elegance'' and ``awareness'' qualitative measures could

be employed that are less environment specific. A chosen path to a destination path can be

characterized as ``elegant'', i.e. well-designed, when it is a smooth and easy-to-follow path that

does not direct a human to overly congested areas that eventually might lead to a situation

where a human gets completely blocked. Furthermore, a human follows a path that can be

characterized as ``aware'', when it is a suboptimal path, i.e. a little longer in distance, than the

obvious optimal path but it has been estimated that the latter path is becoming congested and

might eventually delay him or even completely block him.

When a human wants to reach a destination point he/she makes an instantaneous decision

1.1 : Problem Statement 3

about the path to follow. It is assumed that all humans, most commonly, want to reach a

destination point as fast as possible with the minimum effort. If we consider the steps a human

follows to decide how to approach its destination point we will see that its not a spontaneous

decision but an informed decision. When a human is in an empty and static environment, he

simply assesses the time or the distance required to reach the destination position. However,

when a human is in a dynamic environment where there are other humans moving within it

as well, the two previously mentioned quantitative measures might be proven insufficient. In

dynamic congested environments, the time and distance quantitative measures when assessed

prior to the start of the human's movement are not guaranteed to be valid throughout the whole

movement until the destination point is reached. For that reason, in dynamic and congested

environments humans attempt to assess the quantitative measures with a projection to the future,

i.e. attempt to predict the state of the environment at sometime in the future. Furthermore,

in dynamic and congested environments humans consider alternative paths to the destination

position, ``elegant'' and ``aware'' paths. These alternative paths might be worse in time or

distance measures when assessed prior to the human's decision but in the future they can

potentially outperform a currently optimal path, in terms of time or distance measures, due to

the changes occurring in the environment. Although, this might seem oxymoron, this is due

to the fact that in dynamic environments optimal preplanned paths most commonly cannot be

executed as planned because of the unforeseen changes in the environment.

Another important behavior of humans is that they are able to repeatedly reassess the

quantitative and qualitative measures of the path they are executing but also of other alternative

paths using the information they gather during execution. This allows humans to decide if they

should change completely the path they have chosen initially to reach their destination point,

depending on the occurring changes in the environment. Hence, humans do not stick to their

initial decision and can easily change their initial plan.

4 Chapter 1 : Introduction

In result, although humans are able to decide instantaneously which path they should follow

to reach a destination point, they actually perform many tasks so that this decision is an informed

one. They assess the time or distance required to reach their destination point, they attempt to

predict the future state of the environment and assess the time or distance required to reach

their destination point when considering the future state of the environment. Furthermore,

they preform these tasks continuously until they have reached their destination point.

On the other hand, currently in robotics the most common approach employed to decide

the path a robot should follow to reach its destination point is much different. Most approaches

produce an optimal path that is decided as if the robot was operating in a static environment, and

then during execution other methodologies are employed to accommodate for the unexpected

changes of the environment. More importantly, in most of these approaches the robot sticks to

the initial preplanned path no matter what the changes in the environment are and attempts to

follow this path without considering alternative paths during execution. This approach however,

as explained earlier, leads very often to executing paths that are very poor in performance

measures as compared to the optimal preplanned path.

In this thesis, a novel approach to path planning is proposed that has more resemblance to

the approach a human would follow to decide the optimal path to his destination point. As such,

the proposed approach employs techniques for predicting the future state of the environment

and makes use of this prediction to produce ``elegant'' and ``aware'' paths that, although they

might be sub-optimal at the time of the decision, when considering only the current state of the

environment, they end up being optimal during execution. Furthermore, the proposed approach

continuously reassesses the state of the environment and is able to change completely the path

the robot executes on-line.

1.2 : Practical Interest 5

1.2 Practical Interest

The robot navigation task has been studied extensively by the robotics research community

over the last decades. Today it can be claimed that robotics research has reached a point where

the main task of navigation is almost solved.

However, this is completely true only for specific environments and under specific assump-

tions. There are numerous successful approaches to the robot navigation task but robotics

research is still far from the vision of building robots that behave much like humans and can

truly cooperate and coexist with them and in a sense acclaim a role in our society - much like

the robots appearing in science fiction books and movies.

Nowadays, robotics applications are not confined to industrial purposes where they only

have to perform a specific and, most commonly, a repetitive task. The trend in robotics today

and for the future is in robots that are intelligent, autonomous and can perform complex tasks

in dynamic environments. More importantly, future robots have to be able to perform their

assigned tasks in harmony with humans, operating within the same environment.

This thesis attempts to make a step forward towards robots that simulate aspects of human

behavior and can truly cooperate and coexist with humans. Specifically, we consider the problem

of building robots that can operate in environments that are highly populated and perform the

assigned tasks efficiently and effectively while humans operate in the same environment. In this

thesis, the task the robot performs is focused in reaching a goal position.

The problem considered in this thesis, a robot reaching a goal position in a time-optimal,

``elegant'' and ``aware'' manner, can be applied in many robotics applications. This behavior

fits mainly, but is not limited, to personal and service robots. Personal robots have many

applications ranging from purely enlightenment purposes (e.g. Sony's Aibo dog-like robot) to

robots that assist the disabled and elderly and robots that perform the dull and fatigue household

6 Chapter 1 : Introduction

tasks (e.g. iRobot's vacuum cleaner Roomba). Service robots can be applied to many tasks as

tour guides, office robots, surveillance robots, search and rescue robots and many more.

1.3 Scientific Interest

When a robot is given the task of reaching a specific destination point, it is faced with the

question ``What should I do now?''[71]. This question has to be answered, where:

• ``now'' is the current state of the robot (e.g. location, orientation) and the current

environment state;

• ``do'' is one of the actions the robot can perform (e.g. move forward, move left);

• ``should'' is maximize a long-run measure of reward; and

• ``I'' is an automated planning or learning system (agent).

Actually the answer to the question ``What should I do now?'' is given by the three main

subtasks of the navigation problem: mapping, localization and motion planning.

The mapping subtask provides the robot with the knowledge of the environment within

which it operates. The representation of this knowledge can be given either in the form of

a metric map, that represents the geometric properties of the environment, or in the form of

a topological map, that represents the connectivity of detected features of the environment.

Hybrid approaches are also possible, where both metric and topological information is used.

The localization subtask is responsible for maintaining at all times the robot's exact location

within the environment it operates. There have been proposed numerous approaches to solving

the localization subtask but the most recent approaches are targeted towards maintaining a

probability distribution over all possible robot locations instead of providing a single estimate

of the robot's location.

1.4 : Proposed Approach 7

The motion planning subtask steers the robot in executing actions that will eventually lead

it to its destination position in an optimal manner. The optimality criterion has been discussed

previously. Since we are referring to a robot operating in a dynamic environment, the motion

planning subtask has to provide sequences of actions that not only lead the robot to its goal

position but also ensures that the robot will not collide with any static or moving obstacles.

Hence, the motion planning task is subdivided into two subtasks: global motion planning and

local motion planning or just motion planning and collision avoidance, respectively. Therefore,

the global motion planning module provides the path to the goal position and the local mo-

tion planning module directs the robot to execute manoeuvres if necessary to avoid obstacles.

Furthermore, recently it has been recognized that there is the need for probabilistic motion

planning approaches that provide sequences of actions based on the probability distribution of

the robot's location instead of planning based on a single best estimate of the robot's position.

Although, probabilistic methods for mapping and localization have been studied extensively and

are commonly used, the same does not hold for probabilistic motion planning approaches.

In total, the navigation problem is treated currently by employing separate cooperating

modules for each of the above mentioned modules.

1.4 Proposed Approach

In this thesis, we are mainly dealing with the motion planning module and implicitly with

the localization module. It is assumed that a metric map of the environment is provided. This

thesis proposes a unified model that incorporates the modules for localization, global motion

planning and local motion planning. The proposed model is utilized for driving the robot in

highly populated environments, as mentioned earlier, and therefore future obstacle motion

prediction is also incorporated into the model to obtain paths that are not only time-optimal

but also ``elegant'' and ``aware''.

8 Chapter 1 : Introduction

As implied earlier, probabilistic methods for mapping, localization and motion planning are

recognized currently as the most appropriate navigation approaches. This is due to the fact that

there is uncertainty in identifying the true state of the world and the robot [125]. Hence, during

the last years robotics research has focused in probabilistic methods that provide a probability

distribution over all possible states rather than a single estimate of the true underlying state.

Probabilistic methods for mapping and localization have been well studied and are extensively

used in many robotics applications. However, probabilistic methods for motion planning are

not that commonly used even thought it is now recognized that probabilistic methods offer great

advantages over conventional motion planning methods [101]. Conventional motion planners

that provide sequences of actions based only on a single best estimate often result to deceptive

paths, in the sense that the planned shortest path to the goal is not the one that is actually

executed since the planner may have an erroneous estimate of the actual robot location.

In this thesis we employ a probabilistic unified model for motion planning and localization.

This model is the Partially Observable Markov Decision Process (POMDP). POMDPs are well

suited for robotic applications as they are probabilistic and model explicitly the actions and

states of the robot. Since the true underlying state of the robot is never known, POMDPs use

observations that assist in determining the probability distribution over the set of possible robot

states.

POMDPs are well established models for robotics applications, but they have not been

used that extensively for motion planning because of the very large computational overhead.

POMDPs have been applied so far mainly as global path planners that provide an abstract

trajectory to a destination point and a local motion planning module is usually employed to

drive the robot between the points directed by the solution of the POMDP. POMDPs have been

originally employed for robot motion planning almost a decade ago [59] but only recently the

robotics research community has revived its interest in applying POMDPs for motion planning

1.4 : Proposed Approach 9

where many approximation methods for solving POMDPs have been proposed that attempt to

harness the extreme computational requirements of solving POMDPs [51].

In this thesis, POMDPs are employed under a completely different perspective. POMDPs

are used to drive the robot to its destination position without the intervention of any other

module for local obstacle avoidance or localization. To facilitate this task within a POMDP

formulation, it is required that the POMDP is solved at each time step on-line to provide

the action the robot should perform. Furthermore, the POMDP must be able to model the

environment at a fine resolution to produce smooth paths. These requirements are achieved

by employing a novel hierarchical representation of POMDPs.

The navigation problem described cannot be modelled with a flat POMDP, even if approx-

imation methods were used to solve it, since the computational requirements are extremely

hard to manage in real-time. Hence, a hierarchical representation of POMDPs, specifically

designed for the autonomous robot navigation problem, is utilized and is termed as Robot

Navigation-HPOMDP (RN-HPOMDP). The RN-HPOMDP is capable of modelling real-world

environments at a fine resolution and it is solved in real-time.

As mentioned earlier, the paths the robot follows have to be not only time efficient but

also ``elegant'' and ``aware''. This is achieved by incorporating into the POMDP not only the

current state of the environment but also prediction about the movement of humans and/or other

objects. Motion prediction with conventional techniques is able to provide good estimates only

for the immediate next step position of the movement. This kind of prediction does not provide

enough information to be able to produce ``elegant'' and ``aware'' paths. Hence, we utilize a

novel methodology for long-term prediction that attempts to estimate the final destination of a

human's movement.

Finally, a methodology for modifying the robot's speed of motion by the POMDP is pro-

posed. Increasing or decreasing the robot's speed, improves further the quality of the paths

10 Chapter 1 : Introduction

obtained by the POMDP especially in the cases where there are changes in the environment

that are impossible to predict.

1.4.1 Contributions

The main contributions of this thesis are summarized into the following features:

• a new hierarchical representation of POMDPs, specifically designed for the autonomous

robot navigation problem, termed as the Robot Navigation-HPOMDP (RN-HPOMDP);

• POMDPs are employed as a unified navigation model that can handle all aspects of the

navigation without the intervention of any other external module and also provide the

actual actions the robot executes;

• a novel approach for predicting the future motion of humans and/or other obstacles based

on estimates of their final destination point;

• a novel motion tracker that utilizes the future motion prediction of humans and/or other

obstacles;

• a novel methodology for modifying the robot's speed of motion to avoid humans and/or

other obstacles effectively.

1.4.2 Publications

Parts of the work presented in this thesis have already been submitted for publication or pub-

lished to international scientific journals and conferences as follows:

• A. Foka and P. Trahanias, ``Predictive autonomous robot navigation'', under preparation

for submission to the Autonomous Robots Journal [35].

1.5 : Thesis Structure 11

• A. Foka and P. Trahanias, ``Real-time hierarchical POMDPs for autonomous robot nav-

igation'', IJCAI-05 Workshop: Reasoning with Uncertainty in Robotics (RUR-05) [37].

• A. Foka and P. Trahanias, ``Real-time hierarchical POMDPs for autonomous robot nav-

igation'', submitted for publication in the Robotics and Autonomous Systems (RAS)

Journal [36].

• A. Foka and P. Trahanias, ``Predictive control of robot velocity to avoid obstacles in

dynamic environments'', presented in the IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS03), Las Vegas, USA, 2003 [34].

• A. Foka and P. Trahanias, ``Predictive autonomous robot navigation'', presented in the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS02), Lau-

sanne, Switzerland, 2002 [33].

1.5 Thesis Structure

This thesis is organized into eight chapters, the first being the current introductory chapter.

The rest of the thesis is composed as follows:

Chapter 2 briefly reviews each module for robot navigation problem that will be incor-

porated into the proposed POMDP model, i.e. motion planning, localization and obstacle

avoidance, and also the modules for motion prediction and motion tracking.

In Chapter 3 the background theory of POMDP models is given.

Chapter 4 describes the hierarchical POMDP (HPOMDP) proposed. The approach for

learning and planning with the proposed HPOMDP is given. Finally, a comparison of the

proposed HPOMDP with other hierarchical approaches in the literature is given.

Chapter 5 gives the methodology used for object motion prediction and motion tracking.

12 Chapter 1 : Introduction

Chapter 6 describes how robot velocity control is achieved using a modified solution of the

POMDP.

Chapter 7 presents the results obtained with the proposed approach in real environments

and also provides quantitative evaluation measures.

Finally, in Chapter 8, the achievements of this thesis are summarized and directions for

future research are indicated.

2

Background and Literature Review

The autonomous robot navigation task is subdivided in the three subtasks of mapping, localiza-

tion and motion planning. This thesis is mainly concerned with the task of motion planning and

implicitly with the task of localization. Hence, in this chapter the current research status for

motion planning is presented. Since motion planning is performed in dynamic environments

with integrated motion prediction of moving objects, the current research status for the tasks

of obstacle avoidance and motion prediction and tracking is first presented. Finally, the local-

ization problem is treated implicitly by the POMDP used for navigation and, therefore, a short

survey of localization approaches is given.

2.1 Obstacle Avoidance

Obstacle avoidance, or otherwise stated as local motion planning, is a problem well studied

in robotics research. The obstacle avoidance task is also stated as local motion planning since

the vast majority of robotic navigation systems make use of global path planning and local path

14 Chapter 2 : Background and Literature Review

planning modules. The distinction between global and local path planning is made since the

first one is responsible for deciding the abstract path the robot should follow to reach its goal

and the latter decides how the robot should move between intermediate points of the abstract

path without colliding with any static or dynamic obstacles. This distinction has been adopted

because of the large computational overhead required to solve the global path planning task.

Therefore, it is not possible to solve the path planning problem globally, continuously and

on-line to be able to avoid dynamic obstacles and as a result local motion planning has been

adopted that solves a small proportion of the general path planning problem.

The most commonly used solution to the obstacle avoidance problem is the artificial po-

tential field method. This approach originally proposed by Khatib [63], has been very popular

due to its simplicity and versatility. The robot is treated as a charged particle where it is at-

tracted by the goal point and repelled by the obstacles present in the environment by imaginary

forces. The artificial potential field method suffers from two major problems: the robot may

become trapped in local minima and the robot may oscillate in narrow passages. Despite these

problems, the artificial potential field method has attracted the interest of the robotics research

community and many improvisations on the originally proposed method have been proposed

that attempt to overcome these problems. More specifically, the use of complex potential fields

as harmonic functions [140] and distance transforms [57] treat the problem of local minima

whereas potential field methods that also account for the robot dynamics treat the problem of

oscillations [47].

A very successful and commonly used alternative approach to potential fields is the Vector

Field Histogram (VFH) approach, proposed by Borenstein [12]. The VFH approach has taken

elements by the potential fields and the occupancy grids approach. The VFH approach main-

tains a polar histogram that represents the confidence of the existence of an obstacle as with

occupancy grids, only that the update procedure is much faster since it updates only one cell

2.1 : Obstacle Avoidance 15

for each range reading. Finally, each cell that is believed to be occupied by an obstacle exerts a

virtual repulsive force to the robot whereas the target exerts a virtual attractive force. Improved

versions of the VFH approach have been also proposed. The VFH+ [130] method extends the

original method by considering the robot dynamics as well. In the most recent improvement on

the VFH, the VFH* [129] method, each candidate direction the robot is targeted to is verified

by projecting the position of the robot after executing the candidate direction.

A completely different approach to the obstacle avoidance problem that has been adopted

mainly after the identification of the problems of the original VFH method, is the class of

methods that formulate the obstacle avoidance problem as one of constrained optimization in

the velocity space of the robot. Such methods estimate the translation and rotational velocity

of the robot in order to avoid an obstacle. This approach is different from the potential field

or VFH approaches that provide the direction the robot should follow. Representatives of this

class of approaches can be found in [18, 30, 31, 38, 40, 106]. The most successful and widely

adopted approach of this class is the Dynamic Window Approach (DWA) [40]. The DWA

searches for a pair of translation and rotation velocities that maximizes an objective function

but only within a dynamic window, i.e. within the velocities that are reachable within a short

time interval. Fox et al. [38] have also proposed an extension to their originally proposed DWA,

the model-based dynamic window approach (µDWA). The µDWA is in essence the original

DWA integrated with a map of the environment and the Markov localization algorithm. As

such, the µDWA performs obstacle avoidance in a probabilistic manner.

The problem of obstacle avoidance has been also treated by fuzzy logic [102] and neural

network [20] approaches. However, these methods have not been widely adopted mainly due to

the difficulty of training these systems and more importantly due to their difficulty in dealing with

conditions that have never been encountered before. Finally, standard mechanics and control

theory approaches [25, 88, 128, 131, 137] have also been applied to the obstacle avoidance

16 Chapter 2 : Background and Literature Review

problem. However, these methods are not appropriate for sensor-based navigation since they

assume the robot has a complete world model.

To summarize, all the above mentioned approaches for obstacle avoidance have their advan-

tages and disadvantages, but they all suffer from a very important feature that is inherent in all of

them: they treat the problem locally. Although many of the above mentioned approaches avoid

obstacles effectively, the local treatment of the problem directs the robot into executing globally

suboptimal paths to its destination point. This is due to the fact that all the above mentioned

obstacle avoidance methods stick on the initial planned path to the destination point obtained

by the global path planning module and do not replan no matter the changes that occur in the

environment. This problem has been recognized recently by the robotics research community

and some approaches that integrate the path planning and obstacle avoidance modules have

been proposed [13, 73, 74, 111].

In [13] an approach that integrates the DWA with a local minima-free potential function

that is updated during execution is presented that is termed as the Global DWA. The update of

the potential function is performed only for a specific region to be able to replan in real-time.

Another approach that integrates path planning and collision avoidance is the one presented in

[111]. In this approach, after a path to the goal is computed in the x-y space, a search space is

defined that is reachable within a short time interval that also defines the next subgoal of the

robot. Following, the path to the subgoal point is computed in the five-dimensional space that

includes the orientation of the robot and the translational and rotational velocities.

As implied by the above, the key problem of obstacle avoidance methods is how they affect

the global path the robot follows to reach its goal point. This problem is caused because the

obstacle avoidance is treated locally. The last two approaches reviewed attempt to alleviate this

by solving the problem within an extended area but still not globally. In general we can safely

assume that the desirable robot behavior for obstacle avoidance is to simulate the behavior

2.2 : Motion Prediction 17

of humans for avoiding obstacles. That is, to continuously assess the current state of the

environment but also its estimated future state and compute completely new global paths to

the goal point if necessary.

In this thesis, the obstacle avoidance problem is integrated into the global navigation prob-

lem. As such, obstacle avoidance is treated globally where the complete path to the goal position

is replanned at each time step. Furthermore, obstacle avoidance is performed in a probabilistic

manner since it is integrated into the global probabilistic navigation model. Finally, obsta-

cle avoidance is reinforced by performing prediction of the obstacle's movement as it will be

explained in the following sections.

2.2 Motion Prediction

Predicting the motion of obstacles can assist greatly in the task of obstacle avoidance. Being

able to predict the future position or path of an obstacle allows the robot to decide the actions

it should perform to avoid collision before it comes too close to the obstacle. More importantly,

knowing the future positions of an obstacle's movement permits the obstacle avoidance module

- local or global - to plan more effectively and produce paths that are closer to the corresponding

statically planned optimal path to the destination position.

The importance of motion prediction to obstacle avoidance has been recognized early by

the robotics research community and there are numerous approaches present in the literature.

Until very recently referring to motion prediction was equivalent to referring to one-step ahead

prediction of an obstacle's movement, i.e. predict the position of an obstacle at the immediate

next time step.

One-step ahead motion prediction has been mainly approached by attempting to model the

obstacle's motion by a stochastic process [29, 61, 82, 115, 116, 138, 142] or a Neural Network

18 Chapter 2 : Background and Literature Review

(NN) [19, 85, 86]. In the class of methods that use a stochastic process there are major

assumptions about the obstacle's motion model. For example, in [61] it is assumed that the

obstacle is moving along a straight line; in [142] the obstacle is assumed to obey a specific motion

model that can be extracted by visual processing or otherwise it is assumed to be Gaussian; and

in [82] obstacles' velocity and direction angles are modelled by a random walk process that it

used to calculate the probability density function of the obstacles' position. However, in [29]

there are no constraints on the obstacle motion.

Other approaches to one-step ahead prediction have been proposed that include the least-

mean-square-error classification method [134], the grey prediction theory [77], the use of an

Extended Kalman Filter (EKF) [78] and a polynomial regression model [136]. Furthermore,

approaches that extract information from visual processing regarding the obstacle's motion

are also present in the literature [54, 66, 118]. Finally, in [80] an approach that maintains

a probabilistic distribution of the possibility of the robot and the obstacle meeting on a path

belonging to a predefined set of possible paths based on velocity estimates is presented.

In total, all the previously mentioned approaches that perform one-step ahead prediction

have their advantages and disadvantages but what really matters is the actual effect of prediction

to obstacle avoidance. Although many of the prediction methods present in the literature

claim to be able to predict further in the future than for just one-step ahead, this prediction

cannot be as accurate to be utilizable for obstacle avoidance. However, even though there are

lately prediction methods that perform quite satisfactorily for one-step ahead prediction with

relaxed assumptions on the obstacle's motion, the effect they have on the obstacle avoidance

module is still questionable. This is due to the fact that the information available about an

obstacle's current position and its immediate next time-step position is not indicative about

the general obstacle behavior. In result, one-step ahead prediction can potentially assist the

obstacle avoidance module locally but cannot be that effective to the final path the robot will

2.3 : Motion Tracking 19

execute to reach its destination position. As discussed in the previous section it is of greater

importance the optimality of the ultimate path the robot executes to reach the goal position,

including any manoeuvres to avoid obstacles, than of examining locally how well it avoided a

specific obstacle at a specific occurrence.

To be able to perform obstacle avoidance optimally in a global sense it would be more useful

to be able to know the full trajectory of an obstacle and use this information when planning.

Very recently methodologies for predicting the whole path an obstacle is following have been

proposed in [9, 14, 132] concurrently with our own proposed approach originally presented

in [33]. In [9] a methodology for learning motion patterns of humans in an environment is

presented. This approach uses the Expectation-Maximization (EM) algorithm to cluster motion

trajectories into various classes of motion patterns that are possible in a specific environment.

Prediction is performed by maintaining a likelihood of an obstacle's motion trajectory belonging

to each class of the learned motion paths. As the obstacle continues its movement elements of

the set of hypotheses are eliminated and after some time it converges to a single class of motion

paths. Subsequently proposed methods [14, 132] are very similar to the work of Bennewitz et

al. [9] only that they use a different methodology for clustering the motion paths.

Our proposed approach is different in the way it performs long-term prediction as it does

not attempt to learn or predict whole motion paths but possible destination points. In addition,

our prediction module performs also short-term prediction that is utilized by the long-prediction

algorithm. Furthermore, our approach is integrated with the motion tracker and the global path

planning module.

2.3 Motion Tracking

The task of obstacle avoidance discussed in the previous sections has been defined of high

importance for the robot navigation problem in populated environments. Furthermore we have

20 Chapter 2 : Background and Literature Review

elaborated on the importance of being able to predict the motion of humans or other obstacles

present in the environment and use this information for obstacle avoidance. A prerequisite

for performing the tasks of obstacle avoidance and motion prediction is to be able to solve the

problem of motion tracking, i.e. being able to extract from the obtained sensor measurements

at each time step the position of each object correctly.

The problem of motion tracking has been studied originally by the signal processing com-

munity, mainly for military applications. Kalman filters have been used extensively in this kind

of applications [6]. Additionally the problem of motion tracking has been studied extensively

by the vision community [44]. The motion tracking problem in this thesis is considered under

the perspective of tracking multiple objects based on laser measurements perceived during nav-

igation. Lately, there is a growing interest for tracking multiple objects with multiple robots

[45, 58, 87, 98, 135], a task that is beyond the scope of this thesis.

The problem of motion tracking is actually twofold; it includes a prediction step where the

current position of previously tracked objects is estimated and a data association step where it

assigns detected features to previously detected objects or new objects.

The prediction step of the motion tracking problem is a difficult task to perform due to

the fact that the movement of humans is in general non-linear and non-Gaussian and it is very

difficult to obtain a realistic motion model. However, the problem of motion tracking has been

originally approached with Kalman filters (KF) where non-linearities cannot be modelled. This

eventually led to the use of the Extended Kalman Filter (EKF), that linearizes models with

weak non-linearities around the current state estimate, so that a KF recursion can be applied.

Following, the Unscented Kalman Filter (UKF) has been proposed that approximates more

effectively non-linear models. In total, Kalman filters have been used extensively for motion

tracking although it is recognized that the motion model cannot be well approximated in most

real-world cases. Recently, methods for the prediction step of motion tracking based on Particle

2.3 : Motion Tracking 21

Filters have been proposed with most influential the work in [103]. Particle Filters represent the

dynamic object states by a set of samples (particles) and weight particles based on a likelihood

score. Particles are propagated according to a motion model. The complexity of Particle Filters

grows exponentially with the number of objects to be tracked but several methods have been

proposed that overcome this shortcoming.

The data association step has been originally addressed by the Multiple Hypotheses Tracker

(MHT) [95]. The MHT maintains all possible hypotheses over time and this increases dramati-

cally the computational complexity. To reduce the complexity methods that filter out hypotheses

have been proposed. The Nearest Neighbor Standard Filter (NNSF) [7] classifies detected ob-

jects to the object that is closest in distance. The NNSF and variants of it have been used

extensively in motion tracking since it is a simple filter with small computational complexity

[65, 70]. However, in many cases the NNSF classifies incorrectly a detected object and prunes

away feasible hypotheses. The Joint Probabilistic Data Association Filter (JPDAF) [24] main-

tains at all times the joint probability distribution that determines which detected feature is

assigned to which object. In JPDAF the association variables are considered to be stochastic

variables and one needs only to evaluate the association probabilities at each time step.

The most recent approaches to laser-based motion tracking are based on particle filters

and JPDAF, mainly influenced by the work presented in [103, 104] by Schulz et al. They

have proposed the Sample Based Joint Probabilistic Data Association Filters (SJPDAF) for

motion tracking, that use particle filters to predict the state of objects and JPDAFs to assign

measurements to objects. This approach assumes that the motion of humans follows a Gaussian

distribution.

In [81] conditional particle filters are proposed to perform robot localization and motion

tracking. The conditional particle filter estimates the robot pose as well as people pose. People

pose estimates are conditioned on the robot pose. Data association is performed by a modified

22 Chapter 2 : Background and Literature Review

nearest neighbor filter and human motion is assumed to be brownian motion.

In [56] the multi-target particle filter (MTPF) is introduced, where samples are obtained

from their joint posterior using a proper Markov Chain Monte Carlo (MCMC) technique, the

Gibbs sampler. The Monte Carlo-JPDAF (MC-JPDAF) [133] represents distributions of targets

with Monte Carlo samples instead of Gaussians.

Furthermore, to deal with the increasing complexity as the number of tracked objects in-

creases the authors in [133] also propose the Sequential Sampling Particle Filter (SSPF) that

samples the individual targets sequentially by utilizing a factorization of the importance weights

and the Independent Partition Particle Filter (IPPF) that assumes that associations are inde-

pendent over the individual targets. Another approach to deal with the computational cost of

data association is presented in [41]. It is a hybrid method of couple sample based JPDAF, that

offers stabilility in critical situations, and the independent sample based JPDAF, that has low

computational cost.

To conclude the particle filter based methods, the multiple hypothesis particle filter pre-

sented in [62] that employs nearly independent filters for low computation cost, makes use of

interactions between targets to assist in the prediction step. A Markov random field motion

model is used to model interactions between targets.

A completely different approach to motion tracking is proposed in [10] that utilizes learned

motion patterns of humans, as discussed in the previous section, to track the motion of humans.

In this approach, independent Kalman filters and the nearest neighbor filter are utilized.

In this thesis, the motion tracking problem is dealt in conjunction with the motion prediction

problem. The motion prediction method described in the previous section will be used not only

to provide the estimate of an object's position but also to eliminate data association mistakes

due to occlusions by making use of the long-term prediction. Data association is performed in

2.4 : Robot Motion Planning 23

this work by the nearest neighbor filter.

2.4 Robot Motion Planning

The problem of path planning has been studied extensively by the robotics research com-

munity. The methods present in the literature can be classified into two categories depending

on the model of the environment used. Hence, there are path planning methods that make use

of a topological map and methods that make use of a metric map.

Topological maps are in the form of graphs where the nodes represent distinct places and

the edges represent the relations between them. Common path planning methods that make use

of topological information are the roadmap algorithms including the visibility graph, voronoi

diagram and cell decomposition based techniques [15, 42, 67]. Furthermore, there are path

planning methods based on the A∗ and D∗ algorithms that search a graph for an optimal path

[105, 112]. Finally, the family of the BUG-algorithms are also based on graph search [60, 76].

Planning methods that make use of metric maps have been dominated till now by potential

field methods [63]. In potential field methods the robot is treated as a particle that is under the

influence of a potential field that is formed to represent the environment structure. However,

potential field methods have the major shortcoming of getting the robot trapped in local minima.

To escape local minima there have been proposed heuristics [26] that detect whether the robot

is trapped and attempt to escape the local minimum. Another approach for escaping local

minima is the use of a global navigation function that is a minimum-free function [22, 97, 140].

An additional popular method for path planning with metric maps is value iteration, that is a

dynamic programming algorithm [114, 123].

Other motion planning methods are the ones based on genetic algorithms [2, 79], control

theory [139] and more recently there have been proposed methods that make use of a sensor

24 Chapter 2 : Background and Literature Review

network embedded in the environment [8].

A major issue when planning with any of the above mentioned methods is whether they

can deal with the uncertainty of sensor measurements and the uncertainty of the robot's pose.

Unfortunately, all the above mentioned planning methods assume that the true robot pose

is known and the plans they provide are based on this assumption. However, this is not the

case in real-world environments. Lately, it has been recognized that it is crucial to plan in a

probabilistic manner, i.e. based on a probability density function over all the possible robot

locations rather than based only on a single estimate of the robot's location [125].

Virtually all methods present in the literature that plan in a trully probabilistic manner, i.e.

based on the probability distribution of the robot's true state rather than on a single estimate,

are implemented with a Partially Observable Markov Decision Process (POMDP). POMDPs are

models for decision making that model explicitly uncertainty. As such, POMDPs have been used

for planning in many successfull robot platforms [59, 83, 84, 90, 91, 100, 101, 107, 110, 119, 124].

All the above mentioned approaches for path planning with metric maps have the disadvan-

tage that become computationally expensive as the discretization of the modelled environment

increases. As a result, most robotic platforms deployed in real-world environments use many

path planners of different hierarchy to navigate. For example, the robot Rhino [123] uses value

iteration as a global planner and send intermediate sub-goals to the reactive collision avoidance

module (DWA). The robot Xavier [107] performs high level path planning with the use of a

topological map, then uses another planner for moving the robot from a location to another lo-

cation and finally makes use of an obstacle avoidance module. Finally, the robot Minerva [124]

uses the POMDP based coastal planner to move from one exhibit to another and a low-level

reactive collision avoidance (µDWA).

In this thesis, the motion planning problem is treated with use of a POMDP model. How-

ever, in the proposed approach the POMDP is not used as a high level mission planner as in the

2.5 : Localization 25

previous implementations of POMDP based planners. The major drawback of using POMDPs

as planners is their extreme computational requirements, that has made it impossible to use

with fine discretized environments. Although, lately there has been a growing interest by the

research community to provide approximation methods for solving POMDPs [51, 91, 110] or

hierarchical representations [89, 119], still the allowed discretization of the environment is not

that fine to facilitate the use of POMDPS as low level planners.

In this thesis, a hierarchical representation of POMDPs is proposed that can effectively

model large real-world environments at a fine resolution and can be solved on-line. Hence,

the proposed hierarchical POMDP is used as a low level planner, without the need of any

other high level mission planner, that provides the robot with the actual actions it will execute.

This approach alleviates the need of using many planners of different discretization. Thus, the

probabilistic manner in which POMDPs plan is fully utilized as compared to other architectures

where plans are obtained probabilistically only at a certain level, most commonly at a high

level. Finally, the proposed hierarchical POMDP is utilized as unified navigation model that

incorporates the modules of localization, obstacle movement prediction and obstacle avoidance.

2.5 Localization

The localization problem refers to the problem of deterimining the true location (state) of

the robot at each time step. The simplest way to perform localization is by dead-reckoning,

that is integrate the velocity history of the robot in order to determine the change in position

between two subsequent measurements. However, there is uncertainty in dead reckoning sensor

measurements so localization methods are used to update the robot position.

Localization methods utilize sensor measurements or sensed features and a known map

of the environment in addition to dead reckoning to estimate the true robot position. As a

result, depending on the type of map of the environment and type of features used there are

26 Chapter 2 : Background and Literature Review

different approaches to localization. In general, localization approaches can be classified into

the landmark-based, feature-based and grid-based approaches.

Landmark based approaches usually in conjuction with a topological map attempt to locate

a sensed landmark into the topological map and then perform a triangulation procedure to

determine the position of the robot [11, 16, 21, 53, 68, 84, 96, 108, 113, 121, 127].

Feature-based methods extract information from sensor measurements (e.g. lines, corner

points) and attemp to match them with a known metric map of the environment [23, 27, 43, 46,

109, 117]. Another class of feature-based methods is the scan matching approaches, that is to

match directly laser measurements with a known map of laser measurements [75]. Many of the

feature-based methods utilize Kalman filters to perform localization [3, 4, 17, 25, 55, 69, 141].

In grid-based methods [16, 39, 122] instantaneous sensory information acquired by the

robot is matched with the occupancy grid map and the location of the robot is calculated by

considering areas of the map with high correlation. Grid based methods mainly utilize the

Markov localization paradigm.

Localization methods can be further subdivided into the methods that utilize Kalman filters

and the ones that are based on Markov localization. A comparison between these two main

approaches has been conducted in [48, 49]. The results of this comparative study show that

Kalman filter approaches are superior with respect to computational efficiency, scalability, and

accuracy. On the other hand, Markov-based localization approaches are more robust in the

presence of noise and/or unreliable odometry information. Hence, many hybrid localization

methods that attempt to exploit the robustness of Markov-based localization methods and the

computational efficiency of Kalman-based methods have been proposed [5, 28, 50, 120, 126].

In this thesis, the localization problem is treated implicitly by the POMDP model used

for navigation. POMDPs have been used for localization previously in [16, 64, 84, 108]. In

2.6 : Conclusions 27

[84] a topological map was used and in [64] topological information is combined with metric

information. In our implementation, only metric information is used since the hierarchical

structure employed facilitates the use of a fine discretized grid map.

2.6 Conclusions

In this chapter the background and previous work regarding navigation tasks has been

illustrated. The tasks of obstacle avoidance, motion prediction and tracking, path planning

and localization are treated in a unified manner by the navigation model proposed in this

thesis. Hence, this chapter provided an insight on how the robot navigation problem is treated

by incorporating separate modules and also elaborated on the advantages of using a unified

probabilistic model, the POMDP, that the following chapter presents its theory.

3

Sequential Decision Making

In this chapter the background theory for Partially Observable Markov Decision Processes

(POMDPs) is presented. For clarity reasons, first the Markov Decision Processes (MDPs)

properties will be outlined and following they will be extended for the case of POMDPs. Then,

methods for learning and solving POMDPs will be described.

3.1 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are a model for sequential decision making. MDPs

are formally defined as a tuple M =〈S,A, T ,R〉, where

• S , is a finite set of all possible states of the environment that the agent might occupy.

• A, is a finite set of actions.

• T : S ×A → Π(S) is the state transition function, giving for each state and agent action,

a probability distribution over states. T (s, a, s′) is the probability of ending in state s′,

30 Chapter 3 : Sequential Decision Making

given that the agent starts in state s and takes action a, p(s′|s, a). The distribution

over the state space depends only on the current state-action pair and not on previous

state-action pairs. This requirement ensures the Markov property of the process.

• R : S ×A → R is the reward function, giving the expected immediate reward gained by

the agent for taking an action a when it is in state s, R(s, a).

3.1.1 Solving Markov Decision Processes

Solving an MDP amounts to obtaining a sequence of actions that maximize the reward the

agent will receive according to the defined reward function, R. Hence, the solution of an MDP

is a policy, denoted as π, that is a mapping function from states to actions. An optimal policy,

π∗, is the policy that maximizes the sum of rewards the agent will receive. The sum of rewards

can be computed either for a specific number of steps, the finite horizon case, and either until

the agent reaches the goal state or until the sum of rewards can not be further increased, the

infinite horizon case.

However, in a stochastic world the outcome of an action is never known so the sum of

rewards is actually the expected sum of rewards according to the MDP transition and reward

functions. Therefore, the optimal action to be executed when the agent occupies a state st at

time t, is the one with the maximum expected accumulated reward,

E

[∞∑

t=0

γtR(st, at)

]
, 0 ≤ γ ≤ 1

where γ is a discount factor that determines how important are the future rewards the robot

will receive. If γ is zero, the robot will maximize the reward it will receive for the next time

step only.

The most common way to find the optimal policy of an MDP is to compute iteratively the

3.1 : Markov Decision Processes (MDPs) 31

Table 3.1: MDP value iteration algorithm.

t = 0
for all s ∈ S

Vt(s) = 0
end
while maxs∈S |Vt(s)− Vt−1(s)| < ε

t = t + 1
for all s ∈ S

for all a ∈ A
Qt(s, a) = R(s, a) + γ

∑
s′∈S T (s, a, s′)Vt−1(s′)

end
πt(s) = arg maxa Qt(s, a)
Vt(s) = Qt(s, πt(s))
end

end

value function

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑

s′∈S
T (s, a, s′)Vt−1(s′)

]
. (3.1)

The value function is computed for each state s ∈ S at the time step t according to the

previously computed value function at t− 1. The algorithm for value iteration [94] is given in

Table 3.1. The algorithm in Table 3.1 makes use of the auxiliary Q-functions,

Qt(s, a) = R(s, a) + γ
∑

s′∈S
T (s, a, s′)Vt−1(s′). (3.2)

The value iteration algorithm terminates when the maximum difference between two suc-

cessive value functions is less than a predefined error bound factor ε.

To illustrate how value iteration works a simple navigation example is given below where

the world consists of four states that the robot might occupy as shown in Figure 3.1(a). There

are two actions the robot can execute; move to the East or to the West. The goal state the

32 Chapter 3 : Sequential Decision Making

robot has to reach is state 3. The reward the robot will receive is 1 if it ends up in the goal

state, −1 if executes an action that leads to a wall and 0 otherwise. The robot executes the

actions successfully with probability 0.9. The probability of moving in the opposite direction or

remaining to the same state is 0.1. The reward for each action and the transition probabilities

are shown graphically in Figure 3.1(b).

The value function at time step t = 1 is simply the maximum immediate reward the robot

will receive for executing an action since the value function is initialized to zero, i.e. the value

function for each state at time step t = 1 is equal to:

V1(1) = 0

V1(2) = 1

V1(3) = 0

V1(4) = 1.

The value function at time step t = 2, if we set γ = 0.9, for each state is equal to:

V2(1) = 0 + 0.9[0.9× V1(2) + 0.1× V1(1)] = 0.81

V2(2) = 1 + 0.9[0.9× V1(3) + 0.1× V1(1)] = 1

V2(3) = 0 + 0.9[0.9× V1(4) + 0.1× V1(2)] = 0.9

V2(4) = 1 + 0.9[0.9× V1(3) + 0.1× V1(4)] = 1.09.

In essence, the value function at horizon t = 2 computes the reward the robot will receive

when it executes two consecutive actions. Therefore, the value function equation contains a term

for the immediate reward, R(s, a), and also the expected reward, γ
∑

s′∈S T (s, a, s′)Vt−1(s′),

the robot will receive. The expected reward is computed according to the transition model

defined in the MDP. In the above example, to compute the value function at time step t = 2

for state 1, we add the immediate reward it will receive for taking action East, that is equal to

zero, with the expected reward, i.e. the reward the robot is expected to receive after executing

3.1 : Markov Decision Processes (MDPs) 33

(a) The four states that compose the world in which the robot operates.

(b) The transition probabilities and rewards defined for each state and action.

Figure 3.1: Modelling of a simple navigation task with an MDP.

action East from state 1. When the robot executes action East from state 1, it will end to state 2

with probability 0.9 or it will remain in state 1 with probability 0.1. Thus, the expected reward

is equal to the value function at time step t = 1 of state 2 plus the value function time step

t = 1 of state 1 multiplied by 0.9 and 0.1 respectively, that is the probability with which each

of the two actions will be executed. The value function at time step t = 1, is essentially only

the immediate reward the robot will receive for executing action East from state 2 and state 1.

As a result, the value function of state 1 at time step t = 2 is the sum of rewards for executing

two actions discounted by the γ factor and according to the transition probabilities defined in

the MDP.

With this simple example given above, it is evident that by value iteration at infinite horizon

the optimal sequence of actions that will lead the robot to the goal state is evaluated for each

starting state. Thus, the value function provides the accumulated reward the robot will receive

for executing the whole sequence of actions and not only a single action. However, the perfor-

mance of the value iteration algorithm is critically dependent on the transition model defined

in the MDP, since in a real world environment the outcome of actions is never guaranteed.

34 Chapter 3 : Sequential Decision Making

3.2 Partially Observable Markov Decision Processes

MDPs discussed in the previous section provide a model for decision making under un-

certainty of actions, i.e. the outcome of actions is modelled probabilistically. However, MDPs

require that the true state the robot occupies is always known. Yet, this is not the case in real

world applications where the robot is not always certain about its true underlying state. When

the state of the robot is not always known then the world within it operates is termed as partially

observable. Partially Observable Markov Decision Processes (POMDPs) are an extension of the

MDPs that include a set of observations that assist in determining the state the robot occupies.

Formally, a POMDP is a tuple M =〈S,A, T ,R,Z,O〉, where

• S , is a finite set of all possible states of the environment that the agent might occupy and

are partially observable.

• A, is a finite set of actions.

• Z , is a finite set of observations.

• T : S ×A → Π(S) is the state transition function, as defined for MDPs.

• R : S ×A → R is the reward function, as defined for MDPs.

• O : A× S → Π(Z) is the observation function giving for each state and agent action, a

probability distribution over observations. O(s′, a, z) is the probability of observing z, in

state s′ after taking action a, p(z|s′, a).

3.2.1 Belief State

As already stated, in POMDPs the true state the robot occupies is not guaranteed to be known.

Therefore, in POMDPs a discrete probability distribution is maintained over the set of en-

vironment states, S , representing for each state the robot's belief that is currently occupying

3.2 : Partially Observable Markov Decision Processes 35

that state. This probability distribution is maintained at all times and is termed as the belief

state, bt, of the robot. Hence, bt(s) is the probability of the robot occupying state s at time t,

pt(s : s ∈ S). The set of all possible belief states is B. The belief state is updated every time the

robot executes an action, based on the action it executed and the observation it perceived. Fur-

thermore, when solving a POMDP to obtain an optimal policy, it provides a mapping between

actions and belief states rather than actions and states as in the MDP case.

Belief Update

The state estimator component of a POMDP updates the belief state of the agent every time it

executes an action. Given the belief state of the agent at time t, bt, we would like to compute

the belief state at time t + 1, bt+1, after a transition in the process where the agent occupies

state s, executes an action a and perceives an observation z. The belief that the agent is in the

resulting state s′ is derived by:

bt+1(s′) = p(s′|z, a, bt) (3.3)

=
p(z|s′, a, bt)p(s′|a, bt)

p(z|a, bt)

=
p(z|s′, a, bt)

∑
s∈S p(s′|a, bt, s)p(s|a, bt)
p(z|a, bt)

=
p(z|s′, a)

∑
s∈S p(s′|s, a)p(s|bt)

p(z|a, bt)

=
O(s′, a, z)

∑
s∈S T (s, a, s′)bt(s)

p(z|a, bt)

In essence the above equation evaluates the probability of ending up in state s′ given that the

agent had a belief about its own state bt, executed an action a and perceived an observation

z according to the predefined observation and transition functions of the POMDP, O(·) and

T (·) respectively. The denominator p(z|a, bt), is a normalizing factor and is equal to the total

probability of perceiving the observation z given the previous belief state of the agent and the

36 Chapter 3 : Sequential Decision Making

(a) (b)

Figure 3.2: (a) The forward and (b) backward triggered observation model.

action it executed :

p(z|a, bt) =
∑

s′∈S

p(z|s′, a)p(s′|s, a)bt(s)

=
∑

s′∈S

O(z, s′, a)T (s, a, s′)bt(s)

In the literature, it is frequently assumed that observations are forward triggered [52], i.e. the

agent executed an action, transited to a new state and then it perceived an observation. Equation

3.3 for belief update is for POMDPs modelled with forward triggered observations. However,

most practical applications are modelled by POMDPs with backward triggered observations,

where the perceived observation refers to the "before action" state. The agent executes an

action, transits to a new state but the observation is perceived from the state the agent occupied

before executing the action. The concept of forward and backward observations is illustrated

in Figure 3.2. The belief update for POMDPs with backward triggered observations is:

bt+1(s′) = p(s′|z, a, bt)

=
p(z|s′, a, bt)p(s′|a, bt)

p(z|a, bt)

=
∑

s∈S p(s′|s, a)p(z|s, a)bt(s)
p(z|a, bt)

=
∑

s∈S T (s, a, s′)O(s, a, z)bt(s)
p(z|a, bt)

3.3 : Solving POMDPs 37

where p(z|a, bt) is equal to:

p(z|a, bt) =
∑

s∈S

p(z|s, a)bt(s)

=
∑

s∈S

O(z, s, a)bt(s)

3.3 Solving POMDPs

POMDPs are solved by value iteration as with MDPs. However, it has been already men-

tioned that a POMDP policy is a mapping between belief states and actions as opposed to a

mapping between states and actions as in the MDP case. Therefore, Equation 3.1 that provides

the t-step optimal value function for MDPs becomes:

V ∗
t (b) = max

a∈A

[
ρ(b, a) + γ

∑

b′∈B
τ(b, a, b′)Vt−1(b′)

]
, (3.4)

where B is the set of all possible belief states.

As it can be observed in the above equation, the defined transition, T (·), and reward, R(·),

functions have been replaced by the functions τ(·) and ρ(·), respectively. This is because the

transition and reward functions have to be defined over a belief state, b, instead of a single

state, since the true state of the agent is not completely known. Hence, the new functions are

defined as:

τ(b, a, b′) = p(b′|a, b) (3.5)

=
∑

z∈Z

∑

s′∈S

∑

s∈S
b(s)O(z, s′, a)T (s, a, s′)

ρ(b, a) =
∑

s∈S

b(s)R(s, a). (3.6)

By the above definitions, the evaluation of the expected reward of a t-step value function is

now dependent on the observation perceived as well as the action it performed. In result, the

38 Chapter 3 : Sequential Decision Making

Figure 3.3: An example policy tree of a POMDP.

policy that has to be computed for a POMDP is actually a policy tree. An example policy tree

is shown in Figure 3.3 for T steps. In this policy tree, the root node represents the first action

to be executed and subsequent actions are determined by a subtree that is chosen dependent

on the actual observation the robot perceived after executing an action.

Having defined the policy tree, Equation 3.4 is re-expressed by substituting Equations 3.5

and 3.6 as:

V p
t (b) =

∑

s∈S

b(s)R(s, ap) + γ
∑

z∈Z

∑

s′∈S

∑

s∈S
b(s)O(z, s′, ap)T (s, ap, s′)V zp

t−1(s
′) (3.7)

=
∑

s∈S

b(s)

[
R(s, ap) + γ

∑

z∈Z

∑

s′∈S
O(z, s′, ap)T (s, ap, s′)V zp

t−1(s
′)

]
(3.8)

=
∑

s∈S

b(s)V p
t (s) (3.9)

= b · αp
t (3.10)

Where V p
t (b) is the value of executing the policy tree p of depth t and ap is the root node

action of the policy tree p. V
zp
t−1(s

′) is the value of executing the policy tree of depth t− 1 that

was entered when the observation zp has been perceived by its parent policy tree p.

In Equation 3.10, the so called α-vectors have been introduced, that is the set of hyperplanes

defined by a policy tree p of depth t as:

αp
t = 〈V p

t (s1), ..., V
p
t (sn)〉

3.3 : Solving POMDPs 39

Table 3.2: POMDP value iteration algorithm.

t = 0
for all α-vectors in Γ0

for all s ∈ S
α0(s) = 0

end
end
while maxb∈B |maxαt∈Γt

αt · b−maxαt−1∈Γt−1 αt−1 · b| < ε

t = t + 1
for all policy trees p

for all a ∈ A
for all s ∈ S

αp
t (s) = R(s, a) +

∑
z∈Z

∑
s′∈S O(z, s′, ap)T (s, ap, s′)αzp

t−1(s
′)

end
end

end
V ∗

t (b) = maxp∈P b · αt
p

end

The set of all α-vectors is Γ.

Having defined the α-vectors the optimal value function is now expressed as:

V ∗
t (b) = max

p∈P
b · αt

p

The value iteration algorithm for POMDPs is shown in Table 3.2.

Following, an example of computing a 2-step POMDP value function is shown graphically.

A POMDP with 2 states, 2 actions and 2 observations will be considered. As in the MDP

case we will start by computing the one-step value function and policy tree. There are two

one-step policy trees, one for each possible action, with their associated value functions as

shown in Figure 3.4. The value function for the one-step policy trees is simply the immediate

reward for each action. In this example it is assumed that R(s1, a1) = 0, R(s1, a2) = 1 and

40 Chapter 3 : Sequential Decision Making

(a) (b)

Figure 3.4: The one step POMDP value function for each action.

Figure 3.5: The complete one step POMDP value function.

R(s2, a1) = 1.5, R(s2, a2) = 0. Since there are only two states in this example POMDP, the

belief is shown as a line ranging from zero to one, where the zero value represents that the

robot is certain about occupying state 1 and as the value increases closer to 1 the robot is more

probable that it occupies state 2. The complete one-step value function is the combination of

the value function of all one-step policy trees and determines which policy tree is assigned to a

region of the belief space, as shown in Figure 3.5. Therefore, if the belief is closer to state s1

then action a2 has a higher value and is the action to be executed.

The complete 2-step value function will be computed by building all possible 2-step policy

trees. There are two possible 2-step policy trees, since there are two possible actions in the

POMDP of this example and the root node of a policy tree is an action. There are also two leaf

nodes in the 2-step policy trees since there are two possible observations and the consecutive

action to be executed is dependent on the observation perceived after executing the initial

3.3 : Solving POMDPs 41

action. In Figure 3.6 the policy tree for the initial action a1 is shown.

To compute the value function of the policy tree shown in Figure 3.6, we need to evaluate

the immediate reward and the expected reward. The evaluation of the immediate reward the

robot will receive for taking action a1 is straightforward and has been explained when evaluating

the 1-step value function. However, when evaluating the expected reward we have to consider

all possible observations, and how the robot's belief is transformed when it executes action a1

and observes each of the two possible observations. The expected reward for taking action a1

and observing each of the two possible observations is shown in Figure 3.7. The value functions

shown in this figure are the result of transforming the complete one-step value function, shown

in Figure 3.5, according to the observation and transition probabilities of the POMDP. The

procedure for obtaining the two-step value function for executing a1 as the initial action is shown

graphically in Figure 3.8. In this figure, the belief distributions have been colored according to

the action with the highest reward for each area of the belief. The bottom belief distribution,

the one of the horizon 1 value function, shows with blue color the area where action 2 would

be chosen and with green color the area where action 1 would be chosen. If we assume that the

robot belief is represented by the vertical line denoted with b, then it can be seen what actions

the robot would execute for each observation that it might perceive. Therefore, the initial

action would be a1, and in the case the robot perceives observation z1 the consecutive action

will be a1, otherwise it will be action a2. The value function shown is built by incorporating the

transformed horizon 1 value functions to the appropriate regions of the belief after adding the

immediate reward functions that have been evaluated previously and are shown in Figure 3.4.

To obtain the complete two-step value function the same procedure is followed for having as

initial action the action a2.

In the procedure described, each policy tree produces a value function that is linear in the

belief space. The complete t-step optimal value function, V ∗
t , is the upper surface of all the

42 Chapter 3 : Sequential Decision Making

Figure 3.6: The two step policy tree for executing action a1.

(a) (b)

Figure 3.7: The transformed horizon 1 value function for taking action a1 and perceiving each

of the possible observations.

linear functions induced by each policy tree. Hence, the complete t-step optimal value function

is piecewise-linear and convex.

3.3.1 Complexity of Solving POMDPs

When solving the POMDP exactly for a single step in time t, the time complexity is

O
(
|S|2|A||Γt−1||Z|

)
, (3.11)

where S , A, and Z are as explained in Section 3.2 the set of states, actions and observations

respectively. In Section 3.3 Γ has been defined as the set of all α-vectors.

The size of the set of α-vectors at any time t is equal to

|Γt| = |A||Γt−1||Z|. (3.12)

3.3 : Solving POMDPs 43

Figure 3.8: The two step value function for executing action a1 as the initial action.

The doubly-exponential nature of the POMDP solution is apparent by Equations 3.11 and

3.12. Furthermore, it should be noted that the POMDP is solved over the whole belief state B,

that has dimensionality |S − 1| and hence in real-world applications it can become extremely

large.

By the above, it is obvious that solving exactly POMDPs is a computationally expensive

procedure. The complexity of solving a POMDP at a finite horizon is PSPACE-complete

whereas in the infinite horizon case it is undecidable [72]. This computational complexity has

lead into many methods used for pruning α-vectors that do not contribute to the value function.

These vectors are the ones that are dominated in the whole belief space by other α-vectors.

One of the most popular algorithms for pruning is the Witness algorithm [71].

Although pruning algorithms manage to control to some extent the exponential increase

of the number of α-vectors, still the size of POMDPs they can handle is some tens of states.

Hence, many approximation methods have been proposed in the literature and are detailed in

44 Chapter 3 : Sequential Decision Making

the following section.

3.3.2 Approximation Methods

Some of the most commonly used approximations for solving POMDPs so far are heuristic

methods that are based on solving the underlying MDP. These methods offer a great complexity

reduction but they use greedy heuristics to compensate the partial observability of the robot's

state.

The most likely state (MLS) [84] heuristic solves the underlying MDP for the state with the

highest assigned probability. Therefore, the value function becomes:

V ∗
t (s) = max

a∈A
Q(arg max

s∈S
(b(s)), a)

where the Q-function has been defined in Equation 3.2 for solving MDPs and provides the

expected reward when being in a state s and executing an action a. Therefore, the MLS

heuristic solves the MDP only for the state with the highest probability of being occupied by

the robot. However, the full belief is maintained at all times. It is obvious by the above that the

MLS heuristic will decide a wrong policy in cases where the uncertainty in the belief is high.

Another MDP-based heuristic is the voting heuristic [108]. In the voting heuristic the

underlying MDP of all possible states is solved and the action obtained is weighted according

to the belief probability distribution. The optimal value function in this case is:

V ∗
t (s) = max

a∈A

∑

s∈S
b(s)δ(πMDP (s), a)

where

πMDP (s) = arg max
a∈A

Q(s, a)

and

δ(ai, aj) =





1, if ai = aj

0, if ai 6= aj

3.4 : Learning POMDPs 45

The voting heuristic compensates the partial observability in a better manner than the MLS

heuristic but still there are cases depending on the belief distribution that it might fail.

There are numerous other approximation techniques present in the literature that have

been reviewed thoroughly in [1, 51, 99]. More recent approximation methods are those based

on state-space compression [93], belief compression [99] and point-based value iteration where

the POMDP is solved for a sampled set of belief points [51, 91, 92, 110].

All of the approximation methods mentioned above have been applied successfully to prob-

lems with at most a few thousand states. As a result these methods have been applied to

POMDPs used as high level planners. However, the navigation problem in realistic environ-

ments and the use of POMDPs as a unified navigation model, i.e. the problem considered in

this thesis, is orders of magnitude larger than these approximation methods can handle.

3.4 Learning POMDPs

Learning POMDPs involves determining the structure of the POMDP, i.e. the probability

matrices that are comprised by the transition probabilities, T (s, a, s′), and the observation

probabilities, O(s′, a, z).

The most commonly used method for learning POMDPs is the Baum-Welch algorithm that

is derived by the theory of Expectation-Maximization (EM) algorithms. EM algorithms attempt

to iteratively adjust the model parameters such that the likelihood that the obtained training

data were generated by the current model parameters is maximized. Formally, this is expressed

as maxP (M |λ), where M is the obtained training data and λ is the current model parameters.

The Baum-Welch algorithm [64], that is an adaptation of the EM algorithm, is applied for

learning the POMDP probability matrices. The training data M is comprised of action and

observation pairs, M = 〈(a1, z1), (a2, z2), ..., (aT , zT)〉, where T is the length of the execu-

46 Chapter 3 : Sequential Decision Making

tion trace. The model parameters λ are the probability matrices and the initial probability

distribution b, λ = 〈T ,O, b〉.

The Baum-Welch algorithm uses a forward and a backward propagation to calculate the

following probability distributions in order to update the model parameters.

alpha values, αt(s): The probability that the agent occupies state s at time t given the observation-

action pairs until that time.

αt(s) = p(st = s|z1,...,t−1, a1,...,t−1).

beta values, βt(s): The probability of obtaining the observation sequence of the training data

from time t to the end of the execution trace, given that the agent occupies state s at

time t and executes the action sequence of the training from time t to the end of the

execution trace.

βt(s) = p(zt+1,...,T |st = s, at,...,T).

gamma values, γt(s, s′) and γt(s): The gamma values are more precise estimates of the same

probability distribution as the alpha values since they utilize the whole execution trace.

γt(s, s′) = p(st = s, st+1 = s′|z1,...,T , a1,...,T)

γt(s) = p(st = s|z1,...,T , a1,...,T)

scaling factors, scalet: The scaling factors are used to prevent underflowing when the algo-

rithm runs for long training sequences.

scalet = p(zt|z1,...,t−1, a1,...,t−1)

Having defined the variables used by the Baum-Welch algorithm, the forward-backward

propagation, a dynamic programming approach, that applies Bayes' rule repeatedly to calculate

the scaling factor, alpha, beta and gamma values is performed as follows:

3.4 : Learning POMDPs 47

1. Initialize the scale factor and alpha values as:

scale1 =
∑

s∈S
p(z1|s)p(s1 = s)

α1(s) = p(z1|s)p(s1 = s)/scale1, for all s ∈ S

2. Determine the scale factor and alpha values by forward propagation as:

scalet =
∑

s∈S

[
p(z1|s)

∑

s′∈S

[
p(s|s′, at−1)αt−1(s)

]
]

, for t = 2, ..., T

αt(s) = p(zt|s)
∑

s′∈S

[
p(s|s′, at−1)αt−1(s)

]
/scalet, for t = 2, ..., T and for all s ∈ S

3. Initialize the beta values as:

βT (s) = 1/scaleT , for all s ∈ S

4. Determine the beta values by backward propagation as:

βt(s) =
∑

s′∈S

[
p(s′|s, at)p(zt+1|s′)βt+1(s′)

]
/scalet, for all s ∈ S and for t = T−1, ..., 1

5. Determine the gamma values as:

γt(s, s′) = αt(s)p(s′|s, at)p(zt+1|s′)βt+1(s′), for all s, s′ ∈ S and for t = 1, ..., T − 1

γt(s) = scaletαt(s)βt(s), for all s ∈ S and for t = 1, ..., T

Finally, the transition and observation probabilities are updated as:

p(s′|s, a) =

∑
t=1,...,T−1|at=a γt(s, s′)∑

1,...,T−1|at=a γt(s)
, for all s, s′ ∈ S and a ∈ A

p(z|s) =

∑
t=1,...,T |zt=z γt(s)∑

1,...,T γt(s)
, for all s ∈ S and z ∈ Z

48 Chapter 3 : Sequential Decision Making

3.5 Conclusions

This chapter presented the mathematical background of POMDPs. The methodology used

to learn and solve a POMDP has been also presented. This background is required for the

next chapter that presents the proposed hierarchical representation of POMDPs utilized for

the autonomous navigation problem. Finally, the complexity of solving POMDPs has been

illustrated that necessitated the need for the hierarchical POMDP that is proposed in the next

chapter.

4

Hierarchical POMDPs

In this chapter, a hierarchical representation of POMDPs for autonomous robot navigation

(RN-HPOMDP) that can effectively model large real world environments at a fine resolution

is presented. The proposed RN-HPOMDP can be solved in real time. It is utilized as a unified

framework for autonomous robot navigation, implying that no other external modules are used

to drive the robot. The RN-HPOMDP integrates the modules for localization, planning and

local obstacle avoidance; it is solved on-line at each time step and decides the actual actions

the robot performs.

Two other HPOMDP approaches are currently present in the literature that employ either

state space hierarchy [119], applied as a high level mission planner, or action and state space

hierarchy [89], applied for high level robot control and dialogue management. Independently

and concurrently with these works, we have come up with a HPOMDP∗ that applies both

state space and action space hierarchy. It is specifically designed for the autonomous robot
∗Preliminary versions of the RN-HPOMDP are presented in [33, 34].

50 Chapter 4 : Hierarchical POMDPs

navigation problem, hence the term RN-HPOMDP, and offers specific advantages over the two

approaches mentioned above.

POMDP solution methods suffer from the ``curse of dimensionality'' [59] and also the ``curse

of history'' [91]. Applying both state space and action space hierarchy, as in the RN-HPOMDP,

both curses can be harnessed. In the following the structure of the RN-HPOMDP is presented

along with the methodology used for learning and planning with the RN-HPOMDP in Sections

4.4 and 4.5, respectively. A detailed comparison of our approach and the other two approaches

present in the literature can be found in Section 4.7.

The formulation of a flat POMDP for the predictive navigation problem is first presented

that will be explained in the following sections of this chapter how it is transformed to a

hierarchical POMDP.

4.1 POMDP Formulation for Robot Navigation

In the following we present a formulation of flat POMDPs for autonomous robot navigation

in a unified framework. The POMDP decides the actions the robot should perform to reach

its goal and also robustly tracks the robot's location in a probabilistic manner. In the problem

considered in this thesis, we are interested in dynamic environments and hence the POMDP also

performs obstacle avoidance. All three functionalities are carried out without the intervention

of any other external module.

In our implementation the robot perceives the environment by taking horizontal laser scans.

In addition, an occupancy grid map (OGM) of the environment obtained at the desired dis-

cretization is provided. The OGM is used to determine the set of possible states the robot might

occupy. Laser measurements are used to obtain observations. In the following, the elements

of a POMDP, 〈S,A, T ,R,Z,O〉, are instantiated for robot navigation as:

4.1 : POMDP Formulation for Robot Navigation 51

set of states, S: Each state in S corresponds to a discrete entry cell in the environment's oc-

cupancy grid map (OGM) and an orientation angle of the robot with respect to a global

reference system, i.e. each state s is a triplet (x, y, θ).

set of actions, A: It consists of all possible rotation actions from 0◦ to 360◦ termed as ``action

angles''. The discretization of the robot orientation angles and action angles depends on

the number of levels of the POMDP hierarchy (see later Section 4.2).

set of observations, Z: The observation set is the element of the POMDP that assists in the

localization of the robot, that is the belief update after an action has been taken. The set

of observations is instantiated as the output of the iterative dual correspondence (IDC) [75]

algorithm for scan matching. At each time step, an observation is obtained by feeding the

IDC with the current scan of the robot and a reference scan of the environment in which

the robot operates. The IDC also requires an estimate of the robot's position from which

the current scan was obtained, which is given as the robot's position before it performed

the action. This position is taken to be the most likely state of the robot's belief state.

This definition of the observation function enables us to define it independently of the

actual environment structure and dependent only on the robot motion model. The belief

distribution is not initialized as a uniform distribution but rather based on the assumption

that the robot has a good estimate of its initial position. It is reasonable to assume that

the robot cannot move too far from its previous state at a single time step. Therefore,

the output of the IDC algorithm, that is the dx, dy and dθ from the estimated location

provided, will be within certain limits. The output of the IDC algorithm is discretized

and thus the set of observations remains small and manageable.

reward function, R: Since the proposed POMDP is used as a unified framework for robot

navigation that will provide the actual actions the robot will perform and also carry out

52 Chapter 4 : Hierarchical POMDPs

obstacle avoidance for moving objects, the reward function is updated at each time step.

The reward function is built and updated at each time step, according to two reward grid

maps (RGMs): a static and a dynamic [33]. The RGM is defined as a grid map of the

environment in analogy with the OGM. Each of the RGM cells corresponds to a specific

area of the environment with the same discretization of the OGM, only that the value

associated with each cell in the RGM represents the reward that will be assigned to the

robot for ending up in the specific cell. The static RGM is built once by calculating

the distance of each cell to the goal position and by incorporating information about

cells belonging to static obstacles. The dynamic RGM is responsible for incorporating

into the model information about the current state of the environment, i.e. whether

there are objects moving within it or other unmapped objects. In our implementation

the robot perceives the environment by taking horizontal laser scans. Hence, at each

time step the current laser scan is used to detect the location of objects that are not

present in the map. The location of all detected objects form the dynamic RGM where

the corresponding cell values are zeroed. Superimposing the static and dynamic RGMs

provides the reward function that is updated at each time step. It should be noted that

the choice of including in the reward function information about moving objects has

alleviated the need of modelling moving objects as observations. Modelling the position

of moving objects as observations would increase dramatically the size of observations

since it would have to be at least equal to the size of the grid of the modelled environment.

The detailed procedure for building the RGMs and also the update procedure is given

in Section 5.4.

transition and observation functions, T and O: They are initially defined according to the

motion model of the robot and then they are learned as explained in Section 4.4. Since

observations have been defined to depend only on the robot motion when an action is

4.2 : The RN-HPOMDP Structure 53

executed, the observation function can also be defined according to the motion model.

That is, according to the robot motion model the expected displacement of the robot (dx,

dy, dθ) for executing each action can evaluated and hence form the initial observation

function that is learned following the procedure described in 4.4.

The above instantiation of a POMDP for robot navigation refers to a flat POMDP and in

the following sections it will be explained how these elements are embedded into the proposed

hierarchical POMDP. The described POMDP will be referred to as the corresponding flat

POMDP hereinafter.

4.2 The RN-HPOMDP Structure

The RN-HPOMDP is built through an automated procedure using as input a map of the

environment and the desired discretization of the state and action space. The map of the envi-

ronment can be provided as either a probabilistic grid map obtained at the desired discretization

or a CAD map. The grid map provided or obtained by the CAD map is used to determine the

state space of the corresponding flat POMDP. The flat POMDP is not required to be built and

maintained; it is used only as a virtual structure that is used to built the levels of hierarchy of

the RN-HPOMDP.

4.2.1 The corresponding flat POMDP

The state space of the corresponding flat POMDP is composed of all possible states that the

robot might occupy represented by (x, y, θ) triplets, where (x, y) are the coordinates of the robot

location in the grid map and θ is its orientation. The set of orientation angles is composed of

all directions from 0◦ to 360◦ discretized at a desired step of φ degrees. The action space is

also composed of all rotation actions from 0◦ to 360◦, termed as action angles, discretized with

the same step size of φ degrees as with the orientation angles. The set of observations does

54 Chapter 4 : Hierarchical POMDPs

not need to be defined in this virtual structure of the flat POMDP since it is not decomposed

in the hierarchical structure of the RN-HPOMDP. Furthermore, the transition, observation

and reward function are also not defined for the corresponding flat POMDP since they will be

defined directly for each POMDP of the RN-HPOMDP.

4.2.2 Determining the number of levels of hierarchy of the RN-HPOMDP

The RN-HPOMDP structure is built by decomposing the corresponding flat POMDP with large

state and action space into multiple POMDPs with significantly smaller state and action spaces.

Therefore, in all levels other than the bottom level, POMDPs are composed of states and actions

that have a coarse discretization and do not represent the actual state the robot occupies or

the actual action the robot will perform. Hence they are termed as abstract states and abstract

actions [119].

The process of building the hierarchical structure is performed in a top-down approach.

The number of levels of the hierarchical structure is determined by the desired discretization

of the action angles or the orientation angles, since their discretization is the same in the

RN-HPOMDP structure. The discretization of the orientation and action angles has been

chosen to be the same in the RN-HPOMDP structure but this is a designer's choice and is not

compromising as it does not affect the performance of the RN-HPOMDP.

Thus, if the desired discretization of the action angles or the orientation angles is φ degrees,

the number of levels of the RN-HPOMDP structure, L, will be

L = log2(90◦/φ) + 1.

As explained in the following sections, the top-level of the RN-HPOMDP has a discretization of

angles of 90◦ and at each subsequent level the discretization is doubled. Hence, the number of

levels of the hierarchical structure is given by the log2 of the ratio of the top-level discretization

4.2 : The RN-HPOMDP Structure 55

and the desired discretization plus one level that is the top-level.

The number of levels of the RN-HPOMDP structure in conjunction with the desired dis-

cretization of the state space affects the size of the top-level POMDP and in effect the perfor-

mance of the RN-HPOMDP in time complexity as it will be explained in the following sections.

Therefore, the choice of the number of levels of the RN-HPOMDP structure should be made

by considering the desired discretization of the state and action space but also the resulting size

of the top-level POMDP.

4.2.3 Construction of the top-level of the RN-HPOMDP

The top level of the hierarchical structure is composed of a single POMDP with very coarse

resolution. Hence it can represent the whole environment with a small number of abstract

states. The grid resolution of the top level states is equal to d × 2L−1, where d is the desired

discretization of the whole RN-HPOMDP structure and L is the number of levels of the struc-

ture. The orientation angle of the robot and the action angles are also discretized in a very

coarse resolution of 90◦ and thus represent the basic four directions [0◦, 90◦, 180◦, 270◦].

The total number of states of the top level POMDP is equal to |S0|/22(L−1), where |S0| is

the number of states of the corresponding flat POMDP. The number of states of the top level

POMDP is reduced once by 2L−1 because of the coarser grid resolution and again by 2L−1

because of the coarser resolution of the orientation angle, as compared to the corresponding

flat POMDP respectively.

To summarize, the top-level is always composed of a single POMDP with predefined dis-

cretization of the orientation and action angles at 90◦. The state space size of the top-level

POMDP is variable and dependent to the discretization of the corresponding flat POMDP and

the number of levels of the hierarchical structure. Hence, the number of levels of the RN-

HPOMDP structure, L, should be such that it ensures that the size of the top-level POMDP

56 Chapter 4 : Hierarchical POMDPs

remains small.

4.2.4 Construction of the intermediate levels of the RN-HPOMDP

Subsequent levels of the RN-HPOMDP are composed of multiple POMDPs, each one repre-

senting a small area of the environment and a specific range of orientation angles. The actions

of an intermediate level POMDP are a subset of the actions of the corresponding flat POMDP.

In detail, each state of the top level POMDP corresponds to a POMDP at the immediate

next level, as we go down the hierarchical structure. A POMDP at an intermediate level l,

has states that represent grid locations of the environment at a resolution of d× 2(L−l), where

l is the current intermediate level. Thus, by going down the hierarchical structure the grid

resolution of a level's POMDP is twice the resolution of the previous level. Therefore, when a

top level state, that corresponds to a specific grid location, is decomposed it will be represented

in the immediate next level POMDP by an area of 2× 2 cells with double resolution than the

top level's resolution.

Orientation angle decomposition

Going down the hierarchical structure, the resolution of the orientation angle is also doubled.

Since the resolution of the orientation angle is increased as we go down the hierarchical struc-

ture, the whole range of possible orientation angles, [0◦, 360◦], cannot be represented in every

intermediate level POMDP. This would dramatically increase the size of the state space and

therefore we choose to have many POMDPs that represent the same grid location but with a

different range of orientation angles.

The range of orientation angles that is represented within each intermediate level POMDP

is expressed in terms of the orientation angle, θp, of the previous level state that is decomposed,

4.2 : The RN-HPOMDP Structure 57

and is equal to
[
θp − 90◦

2l−2
, θp +

90◦

2l−2

]
,

where l is the current intermediate level. By the above expression of the range of orientation

angles, every intermediate level POMDP will always have five distinct orientation angles.

For example, if the state of the top level POMDP, l = 1, has orientation angle θp = 90◦, the

range of orientation angles at the next level, l = 2, will be equal to [0◦, 180◦]. As mentioned

earlier the angle resolution of the top level is always equal to 90◦ and the next level will

have double resolution, i.e. 45◦. Therefore, the range of orientation angles [0◦, 180◦] will

be represented by five distinct orientation angles. As shown in Figure 4.1, the grid location

represented by the top level state is decomposed into four POMDPs, where each one represents

a different range of possible orientation angles. Consequently, the size of the state space for

every intermediate level POMDP is constant and equal to 20, since it always has five possible

orientation angles and it represents a 2 × 2 area of grid locations. It is easily deduced by the

expression that determines the range of orientation angles for an intermediate level POMDP,

that a grid location represented by a state will correspond at the next level l to 22(l−1) POMDPs.

Action angle decomposition

Action angles are decomposed from the top level POMDP to the next intermediate level in the

same manner as with the orientation angles. The resolution of the action angles at each level

is the same as the resolution of the orientation angles. Hence, it is equal to 90◦/2l−1. As a

result, a top level state is also decomposed into multiple POMDPs, each one with a different

range of orientation angles but also with a different range of action angles. The range of an

action set is equal to
[
ap − 90◦

2l−2
, ap +

90◦

2l−2

]
,

58 Chapter 4 : Hierarchical POMDPs

Figure 4.1: State space hierarchy decomposition. The figure depicts the decomposition of a

top level state to lower level states. The top level state corresponds to 4 POMDPs at level 2,

each one decomposing the location of the top level state into 4 locations, and its orientation

in one of the ranges denoted by the shaded region of the circles for each POMDP. This state

decomposition continues at lower levels until the desired discretization of the environment has

been reached.

where ap is the previous level action and l is the current intermediate level. The action angles

set is also always composed by five distinct actions according to the above expression.

4.2.5 Construction of the bottom-level of the RN-HPOMDP

The procedure described in the previous section is used to built all intermediate levels of the

hierarchical structure until the bottom level is reached. Bottom level POMDPs' state and action

space is discretized at the desired resolution as a flat POMDP would be discretized. Hence,

bottom level POMDPs' states are the actual states the robot occupies and equivalent to the

corresponding flat POMDP states. Similarly, bottom level POMDPs' actions are the actual

actions the robot executes and equivalent to the actions of the corresponding flat POMDP.

4.3 : The Reference POMDP (rPOMDP) 59

Table 4.1: Properties of the RN-HPOMDP structure with L levels.

Top Level Intermediate Level l Bottom Level

No of POMDPs 1 |Al−1| × |S l−1| |AL−1| × |SL−1|

Size of S |S0|/22(L−1) 20 5× (2 + r)2

Range of [0◦, 360◦]
[
θp − 90◦

2l−1 , θp + 90◦
2l−1

] [
θp − 90◦

2L−1 , θp + 90◦
2L−1

]

orientation angles

Resolution of 90◦ 90◦/2l−1 90◦/2L−1

orientation angles

Size of A 4 5 5

Range of [0◦, 360◦]
[
ap − 90◦

2l−2 , ap + 90◦
2l−2

] [
ap − 90◦

2L−2 , ap + 90◦
2L−2

]

action angles

Resolution of 90◦ 90◦/2l−1 90◦/2L−1

action angles

The bottom level is composed of multiple POMDPs having the same properties as all other

intermediate levels' POMDPs, only that the grid location the bottom level POMDPs represent is

overlapping by a region r. Overlapping regions are required to be able to solve the bottom level

POMDPs for border location states. Table 4.1 summarizes the properties of the RN-HPOMDP

structure.

4.3 The Reference POMDP (rPOMDP)

In the previous section, it has been described how state space and action space abstrac-

tion is performed in the RN-HPOMDP structure, to enable real-time solution. However, the

maintenance of the transition and observation functions of each POMDP in the RN-HPOMDP

structure has not been discussed yet.

60 Chapter 4 : Hierarchical POMDPs

The corresponding flat POMDP would require to hold a transition matrix of size (|S0|2 ×

|A0|) and an observation matrix of size (|S0| × |A0| × |Z|), where |S0| and |A0| are the sizes

of the state space and action space, respectively, of the corresponding flat POMDP. The size of

the observation space, |Z|, is the same for the flat POMDP and the RN-HPOMDP since there

is no observation space hierarchy.

The RN-HPOMDP structure requires to hold the transition and observation matrices for

all the POMDPs at all levels. As can be seen in Table 4.1, the number of POMDPs at each level

is large and dependent on the size of action space and state space. Consequently, even thought

each POMDP's observation and transition matrix is small, the total memory requirements

would be extremely large. The RN-HPOMDP has in total larger memory requirements than

the corresponding flat POMDP, although the flat POMDP memory requirements are already

very hard to manage for large real-world environments. For this reason, the notion of the

reference POMDP (rPOMDP) is introduced.

The transition and observation matrices hold probabilities that carry information regarding

motion and sensor uncertainty. The rPOMDP will be used to model motion and sensor uncer-

tainty in a significantly smaller fraction of the world that the robot operates and then transfer

this information to the RN-HPOMDP that models the whole world. This is accomplished by

exploiting the feature that transition and observation probabilities can be defined using only

the relative state of the robot instead of its actual state in the whole world.

The transition probability from a state s to a new state s′, when the robot has performed an

action a, is only dependent on the action a. Therefore when the robot is executing an action a,

the transition probability will be the same for any state s when the resulting state s′ is defined

relatively to the initial state s.

The probability that the robot observes a feature z, when it is in a state s and performs an

action a, can also be defined in the same manner as with the transition probabilities, since the

4.3 : The Reference POMDP (rPOMDP) 61

set of features Z is the result of the scan matching algorithm when feeded with a reference laser

scan and the actual scan the robot perceived (cf. Section 4.1). Therefore, perceived features

are dependent on the actual motion of the robot, i.e. the action a it performed. Consequently

observation probabilities can be defined using a relative initial state.

The rPOMDP is used to model the transition and observation probabilities that can occur

in a single time-step of a robot movement, i.e. when the robot performs a single action a,

using a relative initial state. Therefore, the rPOMDP needs to hold all possible transitions for

executing any single action a regarding that the robot is always located in the same invariant

position within the world. This has the effect that the rPOMDP state space size is dependent

only on the largest possible transition that can occur in a single time-step that is independent

from the actual size of the environment within the robot operates. In essence, the rPOMDP

exploits the feature that the transition and observation probabilities are defined in Section 4.1

in a such a manner that they are only robot dependent instead of environment dependent.

4.3.1 Construction of the rPOMDP

The rPOMDP is built by defining a very small state space, defined as an R×R square grid (in

our implementation R = 7) representing possible locations of the robot and all the orientation

angles of the robot that would be assigned in the flat POMDP. The center location of the state

space represents the invariant state sr of the robot. The action and observation spaces are

defined in the same manner they would be defined for the corresponding flat PODMP. This

rPOMDP requires to hold transition and observation matrices of size ((R× 22+L)2× |A|) and

((R×22+L)×|A|×|Z|), respectively. The size of the matrices is only dependent on the size of

the set of actions and observations and the number of levels of hierarchy, L, since the number

of levels defines the discretization of the robot's orientation angle. By the above, it is obvious

that no matter how big is the environment that is to be modelled with the RN-HPOMDP the

62 Chapter 4 : Hierarchical POMDPs

Figure 4.2: Translation and rotation of the rPOMDP transition probabilities matrix.

use of the rPOMDP allows to have reasonably sized matrices, depending on the choice made

for R, that are easy to maintain and learn.

Given the rPOMDP, transition and observation probabilities for each POMDP in the RN-

HPOMDP hierarchical structure are obtained by translating and rotating the reference transi-

tion and observation probability distributions over the current POMDP state space, as shown

in Figure 4.2. In this figure it is shown that the rPOMDP transition probabilities are translated

and rotated such that the resulting rPOMDP state, s′r, corresponds to the resulting state of

the robot, s′, for which the transition probability is desired to be determined and the reference

action ar is equivalent to the actual action the robot executed, a. The transfer of probabilities

is performed on-line while a POMDP is solved or the robot's belief is updated.

The transition probability for any POMDP of the hierarchical structure, T (s, s′, a), i.e. the

probability of the robot ending up in state s′ when it initially occupies a state s and executes

an action a, is equivalent to the transition probability of the rPOMDP, Tr(sr, s
′
r, ar). The

initial state of the rPOMDP sr, is the invariant state of the rPOMDP. The invariant state sr

is decomposed as the location and orientation triplet (xr, yr, fr), where the invariant location

4.3 : The Reference POMDP (rPOMDP) 63

(xr, yr) is the center location of the grid that represents the rPOMDP state space and the

invariant orientation fr is the orientation angle of 0◦. The invariant state has been chosen to be

represent by the center location of the grid so that the resulting states can also be represented

within the reduced size grid of the rPOMDP. Actually, the size of the grid size of the rPOMDP,

R, has to be chosen such that it ensures that the transitions can be represented within its

constrained size. In our implementation, where R is equal to 7, it implies that the robot can

move in a single time step within a radius of 3 grid cells. The choice of the invariant orientation

angle is clearly a designer's choice and it does not affect the performance of the probability

transfer between the rPOMDP and any POMDP of the hierarchical structure.

To obtain the desired transition probability, a rotation of the rPOMDP transition probabil-

ities is performed by determining the reference action by

ar = a + f − fr.

Following, a translation of the rPOMDP transition probabilities is performed to obtain the

probability of resulting to the reference result state, s′r, that is determined by the following

equation: 


x′r

y′r

f ′r




=




xr

yr

fr




+




x′ − x

y′ − y

f ′ − f




,

where, the states s, s′, sr and s′r are decomposed to the location and orientation triplets

(x, y, f), (x′, y′, f ′), (xr, yr, fr) and (x′r, y′r, f ′r), respectively.

In essence, the rPOMDP makes use of the fact that when a robot executes a rotation action

with constant speed it will translate and rotate by exactly the same amount no matter where

exactly in world it is.

In the same manner, the observation probability for any POMDP of the hierarchical struc-

64 Chapter 4 : Hierarchical POMDPs

ture, O(s, z, a), is equivalent to the observation probability of the rPOMDP, Or(sr, zr, ar).

The reference observation, z′r, is now determined as:




dxr

dyr

dfr




=




d cos(fr + ar)

d sin(fr + ar)

df




,

where the observations z and zr are decomposed into (dx, dy, df) and (dxr, dyr, dfr), respec-

tively, since observations are defined as the position and angle difference between laser scans,

and d is the distance d =
√

dx2 + dy2.

It should be stressed out that the capability of transferring the observation probabilities

between the rPOMDP and a POMDP of the hierarchical structure is due to way the have been

defined to be dependent only on the robot motion.

4.4 RN-HPOMDP Learning

Since a POMDP is a probabilistic model, learning the parameters of this model, i.e. the

transition and observation matrices, is crucial to the performance of the POMDP model and

specifically to its performance in keeping track of the robot's true position and orientation.

For the RN-HPOMDP structure, learning is performed only for the reference POMDP,

since the latter transfers its learned parameters to the whole hierarchical structure, as described

in Section 4.3.

Learning the rPOMDP parameters is performed by initializing the probability matrices and

adjusting their parameters iteratively according to an execution trace, that is composed of action

and observation pairs, to maximize the likelihood that the execution trace was obtained by the

model. The Baum-Welch [64] algorithm, detailed in Section 3.4, is utilized for this purpose.

Since learning is performed only for the rPOMDP, when collecting data for the execution

4.5 : RN-HPOMDP Planning 65

Figure 4.3: Planning with the RN-HPOMDP.

trace the observation and action pairs are converted to reference observations and actions.

Conversion is performed by the inverse procedure described in Section 4.3. Consequently,

learning is performed very fast since the rPOMDP has a very small state space. Evaluation

results of the learned model are presented in Section 7.2.

4.5 RN-HPOMDP Planning

Solving the RN-HPOMDP to obtain the action the robot should perform, involves solving

a POMDP at each level. The intuition of the RN-HPOMDP solution is to obtain at first a

coarse path that the robot should follow to reach a goal position, and then refine this path at

each subsequent level in the area that the robot's current position lies, as shown in Figure 4.3.

The algorithm that implements the above is presented in Table 4.2 and its details are explained

in the following.

During the RN-HPOMDP planning procedure the belief distribution of the corresponding

flat POMDP is maintained at all times. This distribution will be denoted as the full belief.

66 Chapter 4 : Hierarchical POMDPs

Before solving any POMDP at any level, the full belief is compressed, by the functions com-

pressTopBelief() and compressBelief(), to obtain the belief distribution of the

POMDP to be solved. Belief compression is performed according to the state abstraction

present at each level of the RN-HPOMDP structure, i.e. the discretization reduction of each

level as compared to the the discretization of the corresponding flat POMDP. Therefore, the

belief assigned to an abstract state, a state with coarse discretization at any level of the hi-

erarchical structure other than the bottom level, will correspond to the sum belief of all the

corresponding flat POMDP states that the named abstract state has integrated. The function

compressTopBelief() is used to obtain the belief distribution at the top-level POMDP

of the hierarchical structure. The abstract states of the top-level POMDP represent all states

of the corresponding flat POMDP. Hence the sum of the belief of all top-level POMDP states

is equal to one since the sum of the belief of all states of the corresponding flat POMDP is

also equal to one. The function compressBelief() is used to compress the full belief to

the belief of POMDPs at all other levels of the hierarchical structure. The belief of any level's

POMDP abstract state is again obtained by summing the belief all the integrated actual states.

However, intermediate level POMDPs represent only of a small fraction of the full belief and

hence the belief distribution obtained for any intermediate level POMDP is normalized to one.

The top level POMDP is solved, by the function solveTopLevel(), at an infinite

horizon, until the goal state is reached. The top level POMDP produces abstract actions, i.e.

actions at a coarse resolution that infer only the general direction the robot should follow and

not the actual action it will perform. The abstract action to be executed, ap, as dictated by

the top level POMDP solution, determines which POMDP at the immediate next level of the

hierarchical structure will be solved to obtain a new refined abstract action, that has a finer

discretization but still it is not the actual action the robot will perform.

The POMDP to be solved at each intermediate level is determined by the function se-

4.5 : RN-HPOMDP Planning 67

Table 4.2: RN-HPOMDP planning

while not reached the goal state
compressTopBelief(top level)
ap = solveTopLevel(top level)
for l = 2 to L

whichPOMDP = selectPOMDP(l, ap)
compressBelief(l, whichPOMDP)
ap = solveLevel(l, whichPOMDP)

end
executeAction(ap)
z = getObservation()
beliefL = updateBelief(whichPOMDP, ap, z)
full belief = updateFullBelief(beliefL, whichPOMDP)

end

lectPOMDP(). This function searches a level l for the POMDP among all POMDPs in that

level that satisfies the following two criteria:

• The zero moment of the full belief distribution over the area that is defined by the

candidate POMDP states is maximum, where b has more mass.

• The set of actions of the candidate POMDP contains an action that has minimum distance

from the the previous level solution's action, ap.

The function selectPOMDP() determines the POMDP to be solved at each level and can

also accommodate cases where the belief distribution is not unimodal. As noted in Section

4.1 the belief distribution is initialized as unimodal since it is assumed that the robot has a

good estimate of its initial position. However, during execution the belief distribution can

become multimodal. In these cases the selectPOMDP() function can select the correct

peak of belief distribution to determine the POMDP to be solved due to the second criterion

68 Chapter 4 : Hierarchical POMDPs

for choosing POMDPs. However, in cases that this is not possible multiple POMDPs can be

solved at a level, a POMDP at each peak of the belief distribution. This approach provides an

efficient solution when there are multiple peaks in the belief distribution. In the event where no

information is available, i.e. the belief has a uniform distribution, that however is not often the

case in the application considered in this thesis the RN-HPOMDP will not be able to determine

which POMDP it should solve at an intermediate level. Yet, methodologies for overcoming

this problem can be further explored as noted in the Future Work Section.

The structure of the RN-HPOMDP, as described in Section 4.2, ensures that when solving

an intermediate level POMDP the action obtained from the previous level will be refined to a

new action since the action subset range is equal to

[
ap − 90◦

2l−2
, ap +

90◦

2l−2

]
.

Therefore the solution of an intermediate level POMDP is bounded according to the previous

level solution, ap.

The solveLevel() function provides a new abstract action and the described procedure

continues until the bottom level is reached where an abstract action will be refined to an actual

action, that is the action the robot will perform.

In our current implementation of the RN-HPOMDP, all POMDPs at all levels are solved,

within functions solveTopLevel() and solveLevel(), by value iteration using the

Voting heuristic (explained in Section 3.3). However, this is not an inherent feature of the RN-

HPOMDP structure, as any other POMDP solution method can be used. Furthermore, the

POMDP solution method used can also be different for each level of the hierarchical structure.

When the robot executes the action obtained by the bottom level POMDP solution, an

observation, z, is obtained and the belief distribution of this bottom level POMDP is updated

by updateBelief(), according to the equations provided in Section 3.2.1. Bottom level

4.6 : Complexity Analysis 69

POMDPs are composed of actual states and actions, i.e. subsets of states and actions that

compose the corresponding flat POMDP. Hence, updating the belief of a bottom level POMDP,

beliefL, amounts to updating a specific region of the full belief. Therefore, the updated belief

distribution of the bottom level POMDP that was solved is transferred to the full belief by

the function updateFullBelief(). To update all regions of interest in the full belief the

procedure of updating the belief of all bottom level POMDPs that the sum of the belief of

all its states is non-zero and includes in the action set the action ap that the robot executed is

performed and then the probabilities are transferred to the full belief. According to Equation

3.3 that performs the belief update it can be observed that only the observation and transition

probabilities for the executed action ap are used. Furthermore, states with zero belief do

not contribute to the belief update according to the same equation. Hence, the hierarchical

structure and its bottom level can be used to determine which areas of the full belief space

should be updated. This procedure can be though intuitively similar to the procedure used in

belief compression [93, 99] methods or point-based methods [91, 110].

4.6 Complexity Analysis

In the complexity analysis that follows, execution times are evaluated for the POMDP

solution using exact methods and heuristics. The Voting or MLS heuristic, that have the same

complexity, will be assumed as the heuristic used for solving the POMDP. This will assist in the

comparison between the RN-HPOMDP and the other hierarchical approaches present in the

literature that use the above mentioned heuristics. As already mentioned, in our implementation

the Voting heuristic is used to solve POMDPs at all levels.

70 Chapter 4 : Hierarchical POMDPs

4.6.1 Approximate solution

The flat POMDP solution - when solved with the MLS or Voting heuristic - has time complexity

for a single step, O
(|S|2|A|), that is the complexity of solving the underlying MDP. This makes

the POMDP solution intractable when dealing with real world environments at an acceptable

resolution, e.g. having more than 10 million states as in our application.

Obtaining a solution by the RN-HPOMDP can dramatically improve the computation time

required. Referring to Table 4.1, where the properties of the RN-HPOMDP structure are

detailed, the solution of the top level POMDP requires

O

((|S|
22(L−1)

)2

× 4

)

computational time, where L is the number of levels of the hierarchical structure.

The solution of all intermediate levels POMDPs requires O(C1) time, since the size of the

state space and action space is constant and predefined. The bottom level POMDP solution is

O(C2), since the state space and action space is again constant and predefined.

Therefore, the total computational time required to solve the RN-HPOMDP is

O

((|S|
22(L−1)

)2
)

+ (L− 2)×O (C1) + O (C2) ,

which becomes

O

((|S|
22(L−1)

)2
)

,

that is actually the complexity of the top level POMDP. The top-level POMDP state and action

space size can remain small regardless of the size of the whole environment by increasing the

number of levels, L, of the hierarchical structure.

4.6 : Complexity Analysis 71

4.6.2 Exact solution

When solving the POMDP exactly for a single step in time t, the time complexity is

O
(
|S|2|A||Γt−1||Z|

)
,

where |Γt−1| is the set of α-vectors required to represent the value function at time t− 1. The

size of the set of α-vectors at any time t is equal to

|Γt| = |A||Γt−1||Z|.

As explained previously, the time complexity of solving the RN-HPOMDP is equal to the

time complexity of solving the top level POMDP. The top level POMDP of our hierarchical

structure has reduced state space and is equal to
(|S|

22(L−1)

)
, where L is the number of levels.

Furthermore, the action space is constant and equal to four. Therefore, the time complexity

and size of the RN-HPOMDP when solved exactly is

O

((|S|
22(L−1)

)2

|Γt−1||Z|
)

and

|Γt| = |Γt−1||Z|,

respectively.

Apart from the notable reduction in computation time due to the reduced size of the state

and action space, it should be noted that the above mentioned times are for a single time step.

The infinite horizon solution of a flat POMDP would require these computations to be repeated

for a number N of time steps until the goal point is reached, that is dependent on the number

of states of the flat POMDP, |S|. In the RN-HPOMDP case, only the top level POMDP is

solved at an infinite horizon, and the number of time steps N ′ until the goal point is reached,

is now dependent on the number of states of the top level POMDP, (|S|/22(L−1)).

72 Chapter 4 : Hierarchical POMDPs

From the above complexity analysis, we may conclude that the proposed approach takes

care of the ``curse of dimensionality'' [59] and also the ``curse of history'' [91].

4.7 Comparison With Other HPOMDP Structures

In this section we compare the RN-HPOMDP against the other two HPOMDP approaches

present in the literature, in terms of time complexity for solving the HPOMDP, state space

and action space abstraction methodology, and the application framework of the HPOMDP.

Finally, a comparison of the RN-HPOMDP and the most recent approximation methods for

solving a flat POMDP is presented.

4.7.1 Comparison with the Theocharous approach

The Theocharous [119] approach uses a topological map of the environment where the state

abstraction in high levels of the HPOMDP, has a physical meaning based on the environment.

Thus, abstract states are manually defined such that they represent a corridor or a junction. On

the other hand, the RN-HPOMDP is built through an automated procedure that requires as

input only a probabilistic occupancy grid map or a CAD map of the environment.

The Theocharous HPOMDP has been used as a high-level planner where the POMDP

is solved once to obtain the shortest path to the goal position. As a result, the state space

resolution is set to 2m2 and the action space is discritized at a resolution of 90◦. Our approach

models the environment at a fine resolution (e.g. 5cm2) and the action resolution can be

discretized up to 1◦ based on the number of levels of hierarchy. Finally, the RN-HPOMDP is

used as a global planner that is solved at each time step to provide the actual actions the robot

will perform without the intervention of any other intermediate modules. The RN-HPOMDP

integrates the modules for planning, localization and local obstacle avoidance.

The Theocharous approach, uses the MLS heuristic and has time complexity between

4.7 : Comparison With Other HPOMDP Structures 73

O(|S| 2d N |A|)(see †) and O(|S|2|A|)(see ‡), based on how well the HPOMDP was constructed.

The time required to solve the RN-HPOMDP is O((|S|/22(L−1))2), hence the complexity re-

duction of our approach is significantly greater and also is not dependent on any quality measure

of the hierarchical structure.

4.7.2 Comparison with the Pineau approach

In the Pineau HPOMDP approach [89], actions are grouped into abstract actions called sub-

tasks. Subtasks are defined manually and according to them state abstraction is performed

automatically. States that have the same reward value for executing any action that belongs

to a predefined subtask are clustered. Observation abstraction is performed by eliminating the

observations that have zero probability over all state clusters for that actions belonging to a

specific subtask.

Planning with the Pineau HPOMDP involves solving the POMDP defined for each action

subtask. All POMDPs are solved using the exact POMDP solution method.

The HPOMDP proposed by Pineau does not have a guaranteed reduction of the action

space and state space since it is dependent on the action abstraction that is defined manually.

The authors have performed experiments (real and simulated) only for problems of high level

behavior control. Hence it is not clear whether their approach of state abstraction could be

applied to the problem of autonomous robot navigation in the context that we have defined

or, more importantly, if it would perform as efficiently as our approach does, since the latter

has a guaranteed reduction of the state space that is equal to
(|S|/22(L−1)

)
. On the other

hand, the authors in [89] do not state how well their approach performs in terms of state space

†d is the depth of the tree and N is the maximum number of entry states for an abstract state.
‡The size of the action space |A| was added in the time complexity of the Theocharous approach, so

that the comparison with the complexity of a flat POMDP and our approach can be direct, although in

their approach |A| is constant and equal to 4.

74 Chapter 4 : Hierarchical POMDPs

abstraction.

The HPOMDP proposed by Pineau has been used in a real world application for high level

robot control and dialogue management [89]. This application has been modelled using 576

states, 18 observations and 19 actions categorized into 3 subtasks. The problems encountered

with our approach are many orders of magnitude larger (e.g. |S| = 18, 411, 520, |A| = 256,

|Z| = 24) and can be solved in real time.

4.7.3 Approximation methods for solving flat POMDPs

A short discussion on the performance of approximation methods for solving flat POMDPs

follows in this section. This discussion will allow us to elaborate further on the performance of

the RN-HPODMP and also necessitate further the need of the proposed hierarchical structure,

at least when considering the autonomous robot navigation problem.

In [51] a review of approximation methods for solving POMDPs is presented. The com-

plexity of representative methods reviewed can be seen in Table 4.3. Furthermore, one of the

most recent methods for approximation is the Point Based Value Iteration (PBVI) [91] method.

The time complexity of PBVI is O(|S||A||Γt−1||Z||B|), where |B| is the size of the finite set

of belief points and |Γ| remains constant throughout iterations.

To summarize, the time complexity of all approximation methods is in the best case poly-

nomial to the size of the POMDP. All the above mentioned methods have been applied to

problems where the POMDP was comprised of a few thousand states. The problem we con-

sider consists of many orders of magnitude larger state space. As a result, the reduction of the

state space that the RN-HPOMDP offers and also the reduction of the action space is crucial

to its performance. Furthermore, since the proposed hierarchical structure is not restricted

to a specific method for solving the underlying POMDPs, a combination of an approximation

method for solving a flat POMDP with the proposed hierarchical structure can dramatically

4.7 : Comparison With Other HPOMDP Structures 75

Table 4.3: Complexity of solving a POMDP with the approximation methods reviewed in [51].

Approximation Method Complexity

MDP O(|A||S|2)

QMDP O(|A||S|2)

Fast Informed Bound (FIBM) O(|A|2|S|2|Z|2)

UMDP O(|A||S|2|Γ|t−1), |Γt| = |Γt−1||A|

Grid based interpolation extrapolation a O(|G||A||S|2|Z|Ceval)

a|G| is the size of a finite set of grid points used to update the value updates and Ceval is the

computational cost of evaluating the interpolation-extrapolation rule for |G| points, where in some cases

this cost can be eliminated.

Table 4.4: Computation time required to solve a HPOMDP with the compared approaches.

POMDP size CPU time (sec)

Theocharous [119] |S| = 575 |A| = 4 2.11 - 5.7

|S| = 1385 |A| = 4 5.05 - 26.12

Pineau et. al. [90] |S| = 11 |A| = 6 2.84

|S| = 20 |A| = 30 77.99

improve its performance.

4.7.4 Computational time comparison

Further to the theoretical comparison presented in the previous section, for indicative com-

parison purposes we provide the CPU times required to solve the RN-HPOMDP and also the

76 Chapter 4 : Hierarchical POMDPs

Table 4.5: Computation time required to solve the RN-HPOMDP with varying grid size and 5

levels.

Grid size POMDP size CPU time (sec)

5cm× 5cm |S| = 18, 411, 520 |A| = 64 18.520

10cm× 10cm |S| = 4, 602, 880 |A| = 64 0.911

15cm× 15cm |S| = 2, 038, 080 |A| = 64 0.426

20cm× 20cm |S| = 1, 150, 720 |A| = 64 0.257

25cm× 25cm |S| = 734, 976 |A| = 64 0.262

30cm× 30cm |S| = 503, 808 |A| = 64 0.251

Table 4.6: Computation time required to solve the RN-HPOMDP with varying number of levels

and grid size of 10cm× 10cm.

No. of Levels POMDP size CPU time (sec)

3 |S| = 1, 150, 720 |A| = 16 201.210

4 |S| = 2, 301, 440 |A| = 32 16.986

5 |S| = 4, 602, 880 |A| = 64 0.911

6 |S| = 9, 205, 760 |A| = 128 0.460

7 |S| = 18, 411, 520 |A| = 256 0.411

4.8 : Conclusions 77

Theocharous and Pineau HPOMDP approaches in Tables 4.4, 4.5 and 4.6. It should be stressed

out, that the times referring to the Pineau approach are the ones from their initial version of

HPOMDP [90] where there was only action space hierarchy. It should be also noted that the

CPU times mentioned are the ones the authors state and have not been obtained using com-

puters of the same power. Another point is that the Theocharous approach is solved using the

MLS heuristic and in our approach the POMDPs are solved using the Voting heuristic that has

the same computational complexity with the MLS heuristic. However, the Pineau HPOMDP

is solved using exact methods. Regardless of the mentioned differences, the superior compu-

tational performance of our approach can be easily extracted from the tabulated results since

the size of the problem is many orders of magnitude larger.

4.8 Conclusions

This chapter presented the proposed navigation model, the Robot Navigation-Hierarchical

POMDP (RN-HPOMDP). The methodologies for building the hierarchical structure, learning

and planning with it have been introduced. The notion of the reference POMDP (rPOMDP) has

been also established that facilitates compact modelling of all the required POMDP functions.

Finally, the complexity of solving the RN-HPOMDP has been evaluated and a comparison with

other hierarchical POMDP approaches has been conducted. The following chapters will present

how the RN-HPOMDP is utilized for the predictive navigation task proposed in this thesis.

5

Motion Prediction and Tracking

In this chapter the methodology for predicting the future motion of humans and/or other objects

is described. Two kinds of prediction are utilized: short-term and long-term prediction. Short

term prediction refers to the one-step ahead prediction whereas long-term prediction refers

to the prediction of the final destination point of the obstacle's movement. Furthermore,

the motion tracker utilized will be described that functions in conjunction with the long-term

prediction module. Finally, this chapter concludes by describing how the information obtained

by the prediction modules is integrated into the POMDP model used for navigation.

5.1 Short-Term Prediction

The short-term prediction of the future motion, i.e. the one-step ahead prediction, is

obtained by a Polynomial Neural Network (PNN). In PNNs each node's transfer function is a

polynomial. PNN's can model any function since the Kolmogorov-Gabor theorem states that

any function can be represented as a polynomial of the form

80 Chapter 5 : Motion Prediction and Tracking

Figure 5.1: The data set used for NN training.

f(x) = a0 +
∑

i

aixi +
∑

i

∑

j

aijxixj +
∑

i

∑

j

∑

k

aijkxixjxk + ...

where xi is the independent variable in the input variable vector ~x and ~a is the coefficient

vector. PNNs approximate the Kolmogorov-Gabor polynomial representation of a function by

having as a transfer function at each node, a second order polynomial of the form

f(x) = a + bx1 + cx2 + dx2
1 + ex2

2 + fx1x2,

where x1 and x2 are the inputs to the node.

The input to the network, x1 and x2, is the moving obstacle's position at times t − 1 and

t. The positions of the moving obstacle are given to the network as a state. The output of the

network is the predicted position at time t+1. The topology and weights, that is the polynomial

coefficients, of the PNN are determined via training with an evolutionary method [32]. The

data set used was composed of 4500 samples and is shown in Figure 5.1. It was obtained by

arbitrary movement in the environment that the robot operates.

The results obtained from the trained NN are illustrated in Figure 5.2. The first 3000

samples from the data set were used for training and the rest 1500 samples for evaluating the

5.2 : Long-Term Prediction 81

Figure 5.2: The results obtained from the trained NN.

network. It can be seen that the network gives a prediction with a small error for the first 3000

samples but as well for the rest of the samples that the network has not seen before. Therefore,

the network obtained generalizes well for unforeseen situations.

5.2 Long-Term Prediction

Prediction methods known so far give satisfactory results for one-step ahead prediction.

For the robot navigation task it would be more useful to have many-steps ahead prediction.

This would give the robot sufficient time and space to perform the necessary manoeuvres to

avoid obstacles and more importantly change its route towards its destination position. It is

desirable for the robot to develop a behavior that will prefer routes that are not crowded and

thus avoid ever getting stuck. Long-term prediction will enable the robot to execute paths that

are ``elegant'' and ``aware'' as defined in the Introduction Chapter of this thesis.

It is unlikely that any of the available prediction methods would give satisfactory results

for many-steps ahead prediction, given the complexity of the movement behavior. Thus, it is

proposed to employ a long-term prediction mechanism. The long-term prediction refers to the

prediction of a human's or an obstacle's final destination position. It is plausible to assume

that humans mostly do not just move around but instead move purposively with the intention

82 Chapter 5 : Motion Prediction and Tracking

Figure 5.3: The ``hot'' points defined for the FORTH main entrance hall, marked with ``x".

of reaching a specific location. Our approach for performing long-term prediction is based on

the definition of the so-called ``hot points'' (HPs), the points of interest in the environment

where people visit often. For example, in an office environment desks, doors and chairs are

objects that people have interest in reaching them and could be defined as points of interest.

In a museum, the points of interest can be defined as the various exhibits that are present.

Moreover, other features of the environment such as the entry points, passages, e.t.c, can be

defined as points of interest. Evidently, points of interest convey semantic information about a

workspace and hence can only be defined with respect to the particular environment.

The HPs in an environment can be defined either manually or through an automated

procedure. In the following, an automated procedure for obtaining a map of HPs is described.

The methodology for obtaining the long-term prediction is given for both cases where HPs are

defined manually and where they are learned through an automated procedure. The manually

defined HPs for the FORTH main entrance hall where the experiments were conducted are

shown in Figure 5.3. First, the methodology for obtaining the estimated destination position of

a moving object with manually defined HPs is presented and then this approach is extended to

be used with a map of HPs.

5.2 : Long-Term Prediction 83

5.2.1 Estimation of a moving object's destination position

Once the points of interest of an environment are defined, then the long-term prediction refers

to the prediction of which HP a moving obstacle is going to approach. At each time step t, the

tangent vector of the obstacle's positions at times t − 1, t and the predicted position at time

t + 1 is taken. This tangent vector essentially determines the global direction of the obstacle's

motion trajectory, termed as Global Direction of Obstacle (GDO). This direction is employed

to determine which HP a moving obstacle is going to approach. A HP is a candidate final

destination point if it lies roughly in the direction of the evaluated tangent vector. In order to

find such points, we establish a field of view, that is an angular area centered at the GDO. HPs

present in the field of view are possible points to be reached, with a probability wi, according to

a probability model. The latter is defined as a gaussian probability distribution with center at

the GDO and standard deviation in proportion to the angular extent of the field of view. Thus,

points of interest present in the center of the field of view are assigned a high probability, and

points of interest present in the periphery are assigned a lower probability.

With this approach, at the beginning of the obstacle's movement a multiple number of

points of interest will be present in its field of view but as it continues its movement the number

of such points is decreased and finally it usually converges to a single point of interest.

In Figure 5.4 an example of how the procedure for long-term prediction with manually

defined HPs is shown. At the beginning of the obstacle's movement the long-term prediction

obtained is shown in Figure 5.4(a). It can be observed that at this point there are multiple

candidate destination points for the obstacle's movement. However, the destination point that

infers that the moving objects is going to walk down the stairs is estimated as the most probable

destination point of the obstacle's movement as directed by the GDO, shown as a green vector

in this figure. If the whole obstacle motion trajectory, shown in the same figure, is observed it is

obvious that the estimated destination point dictated by the long-term prediction methodology

84 Chapter 5 : Motion Prediction and Tracking

is not the correct one. However, the long-term prediction obtained can be utilized partially.

Therefore, when a long-term prediction is obtained it is utilized only partially for a short interval

that is close to the obstacle's current position. Hence, the long-term prediction when utilized

only partially it provides a rather good estimate of the future motion of the obstacle's movement.

The partial utilization of the obtained long-term prediction is fully detailed in Section 5.4, where

its integration to the navigation model is explained. Additionally, the long-term prediction is

updated at each time step, that is a short time interval, and hence bad estimates can be corrected

quickly. Consequently, as the object has advanced through its motion trajectory the long-term

prediction estimate is closer to the actual destination point as shown in Figure 5.4(b).

The example shown in Figure 5.4 has been chosen such that to demonstrate the weakness

of using manually defined HPs and hence necessitate the use of the map of HPs. When the

obstacle is close to the end of its motion trajectory, as shown in Figure 5.4(c), there is no HP

defined in the direction dictated by the GDO. Instead, there are two points in the periphery of

the GDO, and one of them is the actual destination point of the obstacle. However, the actual

destination point will be assigned a very low probability since it is located in the periphery of the

GDO. The same holds for the other HP located within the field of view. In contrast, there is

no prediction with high probability. In this scenario, if there was a map of HPs available there

would be defined a whole area of points of interest instead of two unique HPs. Specifically,

in the area of the map under discussion there are two sofas where people often go there and

sit. When the map of HPs is constructed the whole area covered by the sofas is determined

as an interesting point instead of the two unique points in the center of the sofas that have

been manually defined. Hence, we would still have obtained a long-term prediction with high

probability. Additionally, the probability of each estimated destination point is not determined

only according to each location within the field of view but also to the popularity of this point

as determined through the learning procedure.

5.2 : Long-Term Prediction 85

The map of HPs can also take care of the worst case scenario where there are not manually

defined points present in the field of view marginally and hence there would be no estimate

available.

5.2.2 Map of hot points

An alternative approach to defining manually the hot points of the environment is to obtain a

map of hot points of the environment through an automated procedure.

The map of hot points is a probabilistic map that gives for each point of the environment

the probability that this point is a hot point. This map is built off-line by a learning procedure

that uses motion traces of humans operating in the environment. At every step of each collected

motion trace the probabilities of the map of hot points are updated in a similar manner to this

used when building an occupancy grid map of an environment from sensor readings.

Having obtained the Global Direction of Obstacle (GDO), defined in Section 5.2.1, the field

of view is determined. The field of view now defines the area of cells that their probabilities

of being a hot point is going to be updated. Lines from the obstacle's current position at all

possible angles within the field of view are examined whether they intersect with a feature of the

environment. This intersection point is considered as a possible hot point (HP). The probability

assignment is performed by obeying two rules:

• the smaller the angular distance, α, of the candidate cell and the GDO the higher the

probability;

• the smaller the distance, r, of the candidate cell and the obstacle's current position the

higher the probability.

The probability of a cell (i, j) being a hot point, p(Hi,j), given an obtained GDO at time

t, GDOt, is given by:

86 Chapter 5 : Motion Prediction and Tracking

(a)

(b)

(c)

Figure 5.4: An example of making long-term prediction for an object's movement.

5.2 : Long-Term Prediction 87

Figure 5.5: The probability assignment for possible hot points is dependent on the angular

distance of the considered cell and the GDO and its distance from the obstacle's current position.

p(Hi,j |GDOt) =
1
2

(
∆− δ

∆
+

Λ− λ

Λ

)
.

As shown in Figure 5.5, the maximum angular distance from the GDO is Λ and is defined

by the size of the field of view. ∆ is a constant that determines the maximum distance allowed

from a cell to be considered as a hot point.

The update of the probabilities is performed according to Bayes rule as:

p(Hi,j |GDOt) =
p(GDOt|Hi,j)p(Hi,j |GDOt−1)

p(GDOt|Hi,j)p(Hi,j |GDOt−1) + p(GDOt|H i,j)p(H i,j |GDOt−1)

Having obtained the probability map of hot points long-term prediction is now performed

using this probability map by considering all lines within the field of view that intersect with a

feature of the environment according to the probability assigned at the map of hot points.

The map of hot points obtained for the FORTH main entrance hall is shown in Figure 5.6.

The map was constructed by taking laser measurements at various times of the activity in the

88 Chapter 5 : Motion Prediction and Tracking

Figure 5.6: The map of ``hot'' points obtained for the FORTH main entrance hall.

FORTH main entrance hall in order to obtain real motion paths that will reveal the true points

of interest in the environment.

5.3 Motion Tracking

The algorithm used for object tracking in this paper is a modification of the commonly

used Kalman tracker. In the Kalman tracker, a Kalman filter is used for predicting the position

of a previously detected object and hence decide if the object actually moved to its predicted

position. In our approach, the Kalman filter is substituted by the short-term and long-term

prediction obtained as described in the previous sections. The data association is performed by

a nearest neighbor filter that is validated by the long-term prediction module.

Initially, the laser scan obtained is filtered to decide which range measurements belong

to moving objects. Filtering is performed by superimposing the current laser scan with the

probabilistic grid map of the environment to remove range measurements that correspond to

5.3 : Motion Tracking 89

Table 5.1: The algorithm for motion tracking

new objects = detectMovingObjects (current laser, previous laser,OGM)
for all detected objects

predicted position of objecti = shortTermPrediction(detected objecti)
end
for all new objects

if mindetected objects distance(new objecti, detected objectj) < ε

nearest object = arg mindetected objects distance(new objecti, detected objectj)
trajectory = longTermPrediction(nearest object)
if verify(new objecti, trajectory) = true

match new objecti with nearest object

else
nearest object = arg mindetected objects−nearest object distance(new objecti, detected objectj)
trajectory = longTermPrediction(nearest object)
if probabilityBelonging(new objecti, trajectory, T) < ρ

match new objecti with nearest object

end
for all unmatched new objects

for all detected objects

trajectory = longTermPrediction(detected objectj)
if probabilityBelonging(new objecti, trajectory, T) < ρ

match new objecti with detected objectj

end
end
for all unmatched new objects

add to detected objects

end

90 Chapter 5 : Motion Prediction and Tracking

features of the static map of the environment. Following, the current laser scan is superimposed

with previous laser scan to decide if there are range measurements that correspond to moving

objects. Range measurements that correspond to moving objects are those that were not present

in the previous laser scan and have not been filtered out by superimposing the current laser

scan with the probabilistic map of the environment.

The range measurements detected as belonging to moving objects that cover an area within

a specific range, are combined to obtain the position of each moving object. At this point, the

position of each currently moving object has to be decided if it belongs to the trajectory of a

previously detected object or if it is a newly detected object.

Matching the positions of the currently detected moving objects with previously detected

objects is performed by utilizing the short-term and long-term prediction. For each previously

detected object a short-term and long-term prediction is obtained. The distance of a currently

detected moving object position with the short-term prediction of a previously detected object

is evaluated. The minimum evaluated distance of all previously detected objects for a specific

current position is regarded to belong to this object if it is smaller than a certain threshold.

However, data association with the nearest neighbor filter is verified by the long-term pre-

diction prediction for the motion trajectory of the object indicated to be matched with. If the

newly detected object's position belongs to the trajectory indicated by the long-term prediction

with a probability higher than a certain threshold then matching is achieved. Otherwise, match-

ing is verified with the immediate next object in distance measures as dictated by the nearest

neighbor filter.

After the described matching procedure there might be positions of currently detected

moving objects that were not matched to any previously detected objects. These unmatched

positions can either belong to newly detected objects or they were falsely not matched with a

previously detected object. The latter case is possible when an object has moved for a larger

5.3 : Motion Tracking 91

distance than the short-term prediction indicated or when an object has been occluded by other

objects for a short time and hence intermediate positions of its trajectory are missing. To deal

with these situations we utilize the long-term prediction.

The long-term prediction provides a prediction of which ``hot'' point an object is approach-

ing. Therefore, the unmatched positions of currently detected moving objects are examined

whether they belong to one of the trajectories indicated by the long-term prediction for each

previously detected object. The decision whether an unmatched position belongs a trajectory

indicated by the long-term prediction is performed in a probabilistic manner. The long-term

prediction provides a probability for each trajectory to a ``hot point'' predicted as a final des-

tination point of an object's movement. Furthermore, a probability is assigned according to

the time difference between an object's last detected position and the position of a currently

detected object, and the estimate of how far in the future the object would reach the position

in the trajectory to a ``hot'' point that was matched with the position of a currently detected

object. If the probability is higher than a threshold that has been determined by trial and error,

then the position of the currently detected object is added to the previously detected object.

Remaining positions of currently detected objects that were not matched by the short-term

or long-term prediction are regarded as new objects.

5.3.1 Tracker results

To demonstrate the effectiveness of the proposed tracker algorithm with the use of long-term

prediction we have set up an experiment where two people walk diagonally and cross each

others path. The robot was set still to observe only the motion of the two people. The tracker

can easily distinguish that there are two persons present, since they are quite far away and they

are not occluded. However, near the middle of the two people's motion where they are too

close to each other the robot perceives only one person as shown in Figure 5.7. This is inevitable

92 Chapter 5 : Motion Prediction and Tracking

in almost any tracker since the two persons are too close to each other. When the two persons

continue their movement and come apart from each other again it would be desirable for the

tracker to be able to correctly associate the two persons with their previously detected paths. A

tracker that uses only a nearest neighbor filter would in most cases associates only one person,

e.g. the one notated with the blue square, as the one continuing its movement and regard the

other person as newly detected motion. Furthermore, in many cases where the same experiment

was performed the tracker using only the nearest neighbor filter has associated conversely the

two persons, depending on the speed at which they were moving and the neighboring threshold

set in the tracker. The use of the long-term prediction overcomes this problem and associates

correctly the two person's movement in almost all cases. This is due to the verification step

performed and association step based on the long-term prediction.

5.4 Prediction Integration Into The Model

The short-term and long-term prediction are integrated in the global model by including

them in the reward function of the POMDP. The reward function is built and updated at each

time step, according to two reward grid maps (RGMs): a static and a dynamic [33]. The RGM

is defined as a grid map of the environment in analogy with the OGM. Each of the RGM cells

corresponds to a specific area of the environment with the same discretization of the Occupancy

Grid Map (OGM), only that the value associated with each cell in the RGM represents the

reward that will be assigned to the robot for ending up in the specific cell. Thus, it would be

desirable that this value gives a description of the state of this square area in the environment

as

• how far it is from the goal position,

• whether it is occupied by a static obstacle,

5.4 : Prediction Integration Into The Model 93

Figure 5.7: Tracking the motion of two persons.

94 Chapter 5 : Motion Prediction and Tracking

• whether it is occupied by a moving obstacle, i.e. human or other robot,

• whether it will be occupied and how soon by a moving obstacle.

The static RGM is built once by calculating the distance of each cell to the goal position

and by incorporating information about cells belonging to static obstacles. The distance of each

cell to the goal position is evaluated using the Euclidean or city block distance metric, although

other distance metrics can also be used. Hence, it includes the first two sources of information

concerning the goal position and static obstacles.

Information provided from the short-term and long-term prediction modules is included in

the dynamic RGM. The inclusion of the short-term prediction is trivial and it involves zeroing

the reward associated with the grid cell that is the predicted next-time position of the obstacle.

The long-term prediction refers to the prediction of the destination position of the obstacle's

movement. Thus, the reward value of the grid cells that are in the trajectory from the obstacle's

current position and its predicted destination position is discounted. Hence, the value of a cell,

(i, j), in the dynamic grid map, DGM , is given by a function

DGM(i, j) = wi · extentγ ,

where wi is the probability that the predicted destination point will be reached, extent is

a constant with range [0, 1], that controls how far the robot should stay from obstacles and γ is

the factor that determines how much the value of extent should be discounted. The value of γ

depends on the estimate of how far in the future this cell will be occupied. For example, if a cell

(i, j) is to be occupied shortly in the future, γ will be close to 0, and thus the reward assigned

to cell p will be small. On the other hand, if cell p is to be occupied far in the future, γ will be

close to 1 and thus the reward assigned to this cell will not be significantly discounted. The γ

factor is defined such that the long-term prediction is utilized only partially for predictions that

5.5 : Conclusions 95

are not too far in the future. Furthermore, the γ factor is dependent on the distance between

the robot's current position and the position of predicted object position to be discounted. In

this way, the movement of objects and humans that are far from the area that the robot operates

currently are not affected significantly.

Superimposing the static and dynamic RGMs provides the reward function that is updated

at each time step. In Figure 5.8 an example of discounting the reward values for an obtained

long-term prediction is shown.

5.5 Conclusions

This chapter presented the methodology used for predicting the future motion of humans

and/or other objects by incorporating two kinds of prediction: short-term and long-term pre-

diction. Long-term prediction is obtained with the use of the defined ``hot'' points of the en-

vironment. These points can be defined manually or learned through an automated procedure

that constructs a map of ``hot'' points. The long-term prediction module is also utilized in the

proposed motion tracker. Finally, the integration of the obtained prediction to the navigation

model has been described.

96 Chapter 5 : Motion Prediction and Tracking

(a)

(b)

Figure 5.8: (a) The static and (b) dynamic RGM. Reward discount is performed according to the

obtained long-term prediction. Long-term predictions for hot points present in the periphery

of the field-of-view have low probability, wi, and thus the reward discount is smaller.

6

POMDP Solution for Controlling the

Robot's Speed

In this chapter, we develop a methodology of solving POMDPs that allows the robot to decide

if it should increase or decrease its speed to avoid an obstacle more effectively. Without control

of its speed, the robot has to make detours or follow a suboptimal path to reach its goal in order

to avoid collision with obstacles. In many cases, the robot can avoid making these suboptimal

actions if it can either increase its speed to bypass the obstacle or decrease its speed to let the

obstacle move away from the robot.

The speed of the robot is chosen not to be included as a characteristic of its state as with

its location and orientation. Moreover, speed actions are also not included in the action set.

Such a choice would further increase the state space or action space. Instead, the solution of

the POMDP is modified to account for the speed decision that the robot has to make.

The robot is allowed to move at three different speeds: normal, fast and slow.

98 Chapter 6 : POMDP Solution for Controlling the Robot's Speed

Figure 6.1: An example policy tree of a POMDP with pairs of actions and speeds.

6.1 Exact Solution

As noted in Section 3.3, to solve a POMDP exactly it is required to evaluate the α-vectors

by the following equation:

V ∗
t (b) = max

p∈P
b · αt

p

that searches all possible policy trees P. Recall that policy trees are defined by having as

nodes actions that are connected with each possible observation. To decide the action to be

executed as well the speed of the robot, nodes are now defined by pairs of actions and speeds.

Thus, an example policy tree is now as the one shown in Figure 6.1.

Since policy tree nodes are composed of action-speed pairs the value function of a policy

tree has now to be evaluated by considering the choice of the action as well as the speed. The

value function of a policy tree is evaluated by Equation 3.8, that is modified to incorporate the

speed decision as

V p
t (b) =

∑

s∈S

b(s)

[
Rm(s, a, v) + γ

∑

z∈Z

∑

s′∈S
Om(z, s′, a, v)Tm(s, a, v, s′)V zp

t−1(s
′)

]

The above equation dictates that it is required to a have a modified version of the reward,

transition and observation functions. However, instead of defining a new POMDP function the

6.2 : The Projected State 99

Figure 6.2: Definition of the projected state sp.

notion of the projected state is defined that allows to use the original POMDP functions.

6.2 The Projected State

When the robot is in a state s and performs an action a with a velocity v, other than the

normal velocity, it is expected to end up with a certain probability in a state s′. Then, the

projected state is defined as the state sp, where if the robot executes the same action a, from

state sp, with the normal velocity it will end up with the same probability to state s′. Of course,

if v is the normal velocity of the robot, then sp is s.

In Figure 6.2 an example of determining the projected state when the robot moves with the

fast and the slow speed is illustrated. For clarity reasons, in this example it is assumed that

the fast speed is twice the normal speed and the slow speed is half the normal speed. In the

case the robot moves at fast speed it forwards two grid cells since with the normal speed it

would forward one grid cell. On the other hand, in the case the robot moves at slow speed it

will remain in the same grid cell.

The projected state sp is determined geometrically by triangulation in the continuous space.

The initial state s is transferred to the continuous space regarding that the robot is in the

center location of the grid cell represented by state s. Following, the vector of the action

100 Chapter 6 : POMDP Solution for Controlling the Robot's Speed

angle is constructed in analogy with the vector of the action angle for normal velocity. When

the POMDP is built a certain normal velocity is considered along with a certain duration of

movement of each action cycle. Therefore, a certain normal speed motion vector is always

assumed in the initial transition probabilities. This vector is used to determine the fast speed

motion vector or slow speed motion vector since the fast and slow speeds are defined as a

fraction of the normal speed. Hence, by triangulation the resulting state s′ is determined.

Next, the inverse procedure is used to determine the projected state sp. Knowing the state s′

and the normal speed motion vector, triangulation is performed to determine the location of

the projected state sp. Finally, the location of the projected state sp is transferred from the

continuous space to a discrete grid cell.

The determination of the projected state sp is an approximation according to the motion

model of the robot used to determine the transitions between states.

6.3 The Modified POMDP Functions

As mentioned above, the POMDP parameters are not altered to include information about

the robot velocity. Therefore, a formulation of the modified reward and transition functions,

Rm and Tm, that relates them to the original R and T functions that were built considering

the normal velocity of the robot only is required. This is achieved by utilizing the projected

state of the robot.

Having defined the projected state, the relation of Rm and Tm to the original R and T ,

respectively, can now be defined. By the definition of the projected state sp, the relation of Tm

to T is straightforward, and is written as:

Tm(s, a, v, s′) = T (sp, a, s′).

6.3 : The Modified POMDP Functions 101

The above equation assumes that the transition probabilities for executing a certain rotation

action a at normal speed are preserved when executing the same rotation action at the fast

or slow speed. This is a safe approximation since in the context in which the change of speed

is used, the robot will move at a speed other than the normal speed for very short intervals

only, i.e. only when the robot has to bypass an obstacle with the fast speed or allow it move

way by slowing down. Furthermore, the fast and slow speeds are defined as fractions of the

normal speed that are rather small and therefore the motion behavior of the robot does not

change dramatically.

The definition of Rm is not as straightforward as for Tm. If Rm is simply defined as

Rm(s, a, v) = R(sp, a), then the robot would always choose to move with the fast speed. This

is because the fast speed will always get the robot closer to the goal and thus the reward that

it will receive will be bigger. Instead, it is desirable that the robot moves at a different speed

from its normal speed only if it has to avoid an obstacle. For that reason change of speed is

penalized.

Rm(s, a, v) = R(sp, a)− penalty,

The penalty factor for change of speed is defined in relation to the reward function to

ensure that the robot has the desirable behavior. The reward function is built by calculating the

distance of each grid cell to the goal position. The value assigned to each grid cell is the distance

to the goal position, inverted and normalized. Therefore, the reward value of neighboring cells

will always differ by a certain amount, as it can be seen in Figure 6.3(a). When the static RGM

is built, the average expected difference∗ of the reward value between adjacent grid cells for

every rotation action a, Ediff(a), can be evaluated.

∗The term expected does not signify the employment of any estimation procedure for the determination

of these values.

102 Chapter 6 : POMDP Solution for Controlling the Robot's Speed

Thus, we define Rm as:

Rm(s, a, v) = R(sp, a)− α · |v − vn|
vn

· Ediff(a),

where vn is the normal velocity of the robot and α is a constant that controls how preferable

the velocity changes are. The bigger the value of α, the less preferable the velocity changes

are. The |v−vn|
vn

factor, ensures that when v is the normal velocity, the reward the robot will

receive will not be penalized. It also accommodates for the effect of the difference between the

fast or slow velocity with the normal velocity on the reward the robot receives by R(sp, a).

For example, when the fast velocity is double the normal velocity, then we expect that the

reward the robot will receive in these two cases will differ by Ediff(a). In the case that the

fast velocity is triple the normal velocity, then |v−vn|
vn

will be equal to 2, as we expect that the

reward the robot will receive in these two cases will differ by 2× Ediff(a).

When there is no obstacle in the route of the robot to its goal, the reward values will be

unaltered and dependent only on the distance to the goal. Hence, in the case of the fast

velocity, the reward the robot will receive after being penalized, will be the same with the

reward the robot will receive for choosing the normal velocity, for α equal to 1. In the case

that there is an obstacle moving in the route of the robot to its goal, then the reward values

of the cells that are predicted to be occupied by the obstacle in the future will be discounted.

Then, the reward the robot will receive for fast velocity will be bigger than the reward for

normal velocity even after it is penalized for changing speed.

An example for this case is illustrated in Figure 6.3(b). It is assumed that there is an

obstacle moving in the environment. The reward value of the cell that corresponds to the

obstacle's current position is set to zero. The reward value of the cells that are in the trajectory

from the obstacle's current position to its predicted destination position is discounted. The

original reward value of these cells can be seen in Figure 6.3(a). The discount of the reward

6.3 : The Modified POMDP Functions 103

(a) (b)

Figure 6.3: (a) The static RGM and (b) An example of the robot choosing to move with the

fast velocity.

values is not the same for all cells, since it depends on the estimate of how far in the future each

cell will be occupied. The robot is currently at the cell denoted with s. If the robot moves with

the normal velocity, it will maximize its reward when executing one of the suboptimal actions

to reach the goal since the reward for executing action North-East has been discounted due to

the long-term prediction. When the reward values for the fast velocity are evaluated, it can

be seen that the reward for executing action North-East will be the maximum. That is because

the robot will end up in a state where its reward has not been discounted due to long-term

prediction and even when the expected difference in the reward values for action North-East is

deducted it will still remain bigger than all other rewards. Hence, the robot will move with the

fast velocity and bypass the moving obstacle.

In the case of the slow speed, the reward the robot will receive for executing any action from

the projected state will always be smaller than the reward the robot will receive for choosing

the normal speed, when there is no obstacle. This reward will be further decreased by the

penalty factor. Therefore, for the robot to choose the slow speed, the reward it receives for the

normal and fast speed has to be smaller. This will be the case when there is an obstacle very

104 Chapter 6 : POMDP Solution for Controlling the Robot's Speed

close to the robot and did not have a long-term prediction to be able to avoid it by increasing

its speed.

The relation of Om to the original observation function O, using the projected state sp, is

straightforward and is written as:

Om(s, a, v, z) = O(sp, a, z).

The above definition holds due to the way the observation set has been defined in Section

4.1. An observation is actually the distance the robot travelled when it has executed a certain

action a. As a result, the relation of Om to the original observation function O is in analogy

with the relation to the definition for the transition function.

6.4 Approximation Methods

The described methodology for controlling the robot's speed can also be applied with any

of the approximation methods reviewed in Section 3.3.2 with the use of the modified POMDP

functions.

In the case that the MLS heuristic is used the optimal value function is computed as:

V ∗
t (s) = max

a∈A,v∈V
Qm(arg max

s∈S
(b(s)), a, v)

where the modified Q-function, Qm, is now defined as:

Qt
m(s, a, v) = Rm(s, a, v) + γ

∑

s′∈S
Tm(s, a, v, s′)Vt−1(s′).

In the case that the voting heuristic the optimal value function is given by:

6.5 : Conclusions 105

V ∗
t (s) = max

a∈A,v∈V

∑

s∈S
b(s)δ(πMDP (s), a, v)

where

πMDP (s) = arg max
a∈A,v∈V

Qm(s, a, v)

and

δ(ai, vi, aj , vj) =





1, if ai = aj and vi = vj

0, if ai 6= aj or vi 6= vj

In the same manner the modified POMDP functions can be applied to other approximation

methods present in the literature.

6.5 Conclusions

In this chapter it has been described how a POMDP is solved so that it can decide the

action the robot should execute and also its speed of movement. This is accomplished without

the need of modelling the robot speed as a characteristic of its state but with the use of the

definition of the projected state. Hence, the robot speed is decided without any increase in

the POMDP size. Consequently, as it will be demonstrated in the following chapter where

the results of the proposed navigation approach are presented, the robot can perform obstacle

avoidance not only by performing detours or changing completely the path to the goal but also

by increasing or decreasing its speed.

7

Results

This chapter presents experimental results that validate the proposed approach for autonomous

robot navigation. Initially the experimental configuration for the real-world environment as well

as the simulated is presented. Following, results that validate the learning of the POMDP model

are given. Finally, results that demonstrate the behavior of predictive obstacle avoidance are

illustrated.

7.1 Experimental Configurations

For testing the performance of the proposed framework, we have performed extensive tests

with both real and simulated data. All real data have been assessed on Lefkos, an iRobot B21r

robotic platform of our lab, while acting in various indoor areas of FORTH. Simulated tests

have been assessed by a home build simulator capable of simulating various robotic sensors

with arbitrary error level configurations.

108 Chapter 7 : Results

Table 7.1: Lefkos Configuration

Sonar 48 (24 surrounding enclosure, 24 surrounding base)
IR 24 (surrounding enclosure)
Tactiles 56 (24 surrounding enclosure, 32 surrounding base)
Laser SICK PLS scanner
Vision System Pan Tilt stereo vision head or panoramic camera

Drive 4-wheel synchronous
Motor 4 high torque 24 VDC servo motors
Translate Speed 90cm/sec
Rotate Speed 167 deg/sec
Translate Resolution 1mm
Rotate Resolution .35 deg
Steerable Turret no power needed
Smart Panels 14 (6 surrounding enclosure, 8 surrounding base)

Diameter 52.5cm
Height 106cm
Weight 122.5kg
Floor Clearance 2.54cm

CPUs 2 Pentium based ATX computers
Communications 10 Mbps Wireless radio ethernet

7.1.1 Lefkos

All real experiments presented in this thesis have been assessed on a robotic platform of our

laboratory, namely an iRobot-B21r, equipped with a SICK-PLS laser range finder. The range

finder is capable of scanning 180 degrees of the environment, with an angle resolution of two

measurements per degree and a range measuring accuracy of 5cm. Table 7.1 summarizes Lefkos

hardware configuration while Figure 7.1 shows pictures of Lefkos.

7.2 : Evaluation of the Learned Model 109

Figure 7.1: Lefkos.

7.1.2 Simulator

For testing the performance of the proposed framework, against arbitrary robot configurations

and being able to compare the results with accurate ground truth, a home-built simulator

allowing various environment and robotic hardware configurations was utilized. The simulator

is capable of performing in arbitrary simulated environments, interpreting and performing all

robot motion commands and simulating all robot sensors at various error levels.

7.2 Evaluation of the Learned Model

In order to test the validity of the learning procedure, we have set up an experiment aim-

ing at a quantitative evaluation of the model that results from a learning session in specific

environments. Two learning sessions have been performed; a learning session in a simulated

environment where the ground truth is available and also one in a real environment. Learning

is performed in both cases with the Baum-Welch algorithm detailed in Section 3.4. The envi-

110 Chapter 7 : Results

ronment chosen for both experiments is the FORTH main entrance hall, as shown in Figure

7.3.

In both experiments, execution traces have been collected where the robot goes from a

start state to a goal state. The start and goal states were different for each execution trace.

The RN-HPOMDP for both experiments was built by discretizing the environment into 5cm2

cells with 7 levels of hierarchy, that results to a discretization step of the orientation and action

angles of 5.625◦. The model ``appropriateness'' has been evaluated using the fitness and entropy

measures defined in [64] as:

fitness = 1/T × ln p(o1...T |a1...T)

entropy = 1/(T ln |S|)×
∑

t=1...T

∑

s∈S

[αt(s) ln(αt(s))].

Fitness is an indicative measure of how well the model explains an execution trace of length

T , i.e. how probable is to obtain an observation o when an action a is executed. Entropy is

a measure of how certain the robot is about its position. The entropy is evaluated by making

use of the alpha values, αt(s), that express the probability that the agent occupies state s at

time t given the observation-action pairs until that time and are utilized by the Baum-Welch

algorithm. The Baum-Welch algorithm is repeated for a number of epochs until it converges.

The fitness and entropy measures are graphically shown in Figure 7.2 for each training epoch.

Ideally, fitness and entropy should converge to zero after a sufficiently large number of training

epochs. As expected, convergence to zero is not achieved, as its the case with all learning

procedures. Still, after a rather small number of epochs, fitness and entropy converge to low

values, indicating the validity of the learned model.

In order to provide additional quantitative results on the model accuracy, the position and

orientation accuracy in maintaining the robot's state was measured and is shown in Table 7.2.

The peak of the POMDP's belief distribution was used as the model's estimate of the robot's

7.2 : Evaluation of the Learned Model 111

Figure 7.2: Evaluation of the learned RN-HPOMDP model.

current state. As can be observed, the figures indicate increased accuracy of the learned model.

In the simulated environment experiments, where the ground truth is available, the position

and orientation errors were measured at each time step during execution between start and

goal points.

In the real environment experiments, two distinct robot locations were manually marked

on the floor of the FORTH main entrance hall, as shown in Figure 7.3. The robot was driven

manually, as accurately as possible, to one of the marked locations and the other marked

location was set as the goal position the robot had to reach. The error in the x, y location

and orientation between the robot's position after executing the trace obtained by the POMDP

model and the marked location it had to reach, was measured manually as accurately as possible.

The mean position and orientation error for both experiments is very close to the discretiza-

tion of the POMDP, as indicated by the entropy and fitness measures of the learned models.

Both experiments, validated that the learned POMDP models were consistent during execution

in terms of maintaining the robot's belief and also in reaching the goal position.

112 Chapter 7 : Results

Table 7.2: Position and orientation accuracy of the learned model.

Mean Error Real Environment Simulated Environment

x(m) 0.053 0.023

y(m) 0.061 0.041

f(deg) 5.525 5.041

Figure 7.3: The marked locations in the environment where the experimental evaluation of the

RN-HPOMDP model was performed.

7.3 Results

In this section a representative set of results of the robot operating in the FORTH main

entrance hall is shown. The robot was set to operate for more than 70 hours. The environment

was modelled with a RN-HPOMDP of size |S| = 18, 411, 520, |A| = 256 and |Z| = 24. The

RN-HPOMDP was built with 7 levels. Experiments were performed in a dynamic environment

where people were moving within it. In all cases the proposed navigation model has shown

a robust behavior in reaching the assigned goal points and avoiding humans or other objects.

Following, sample paths the robot followed to reach its goal position by demonstrating the four

main behaviors it uses to avoid obstacle are presented.

7.3 : Results 113

7.3.1 Avoiding obstacles with a detour

In this experiment we demonstrate how the robot avoids two humans moving in the environment

in such a manner that they block its route to the goal position. If there were no humans or other

objects moving, the robot would follow a straight path to its goal, defined for our experiments

as shown in Figures 7.4 and 7.5. In our experiment two humans are moving in the environment.

One of them is moving towards the straight path that the robot would follow to reach its goal

and the other one is moving in a straight direction vertical to the one the robot would follow. As

shown in the figures the robot detects the moving humans and obtains the long-term prediction

of their movement and hence decides to make a detour by turning. The decision the robot

makes about the detour is long before the robot actually faces the moving humans and where

a local obstacle avoider would decide to make a detour.

7.3.2 Avoiding obstacles by following a replanned path

In this experiment we show that the robot can decide to follow a completely different path

from the one it would follow in a static environment in order to avoid humans moving. It is

obvious from the images shown in Figures 7.6 and 7.7, that the optimal path to reach the goal

position if the robot was operating in a static environment it would be to follow an almost

straight trajectory. In our experiment, a human was moving to block this static optimal path

and the robot decided to follow a completely different path, i.e. follow a trajectory that goes

behind the building's column to reach the goal position.

7.3.3 Avoiding obstacles by decreasing the robot's speed

In the experiment shown in Figure 7.8 the robot cannot perceive the movement of both obstacles

all the time. The person's movement denoted in the figure with the yellow square is occluded at

the beginning and the robot can see it only after it has passed the building's column. However,

114 Chapter 7 : Results

Figure 7.4: Avoiding two moving objects with a detour (I).

7.3 : Results 115

Figure 7.5: Avoiding two moving objects with a detour (II).

116 Chapter 7 : Results

Figure 7.6: Deciding to follow a completely different path (I).

7.3 : Results 117

Figure 7.7: Deciding to follow a completely different path (II).

118 Chapter 7 : Results

at that point the robot cannot increase its speed to bypass this person or make a detour since

there not enough space at that point. Hence, the robot decides to decrease its speed until the

person blocking its way to the goal has passed away. After this point the robot reverts to its

normal speed and continues its movement until it has reached its goal position.

7.3.4 Avoiding obstacles by increasing the robot's speed

In the experiment shown in Figure 7.9 the robot increases its speed to bypass the human's

movement in order to reach its goal position without the need of making a detour. The

human's movement is perceived by the robot from the beginning and hence it obtains the long-

term prediction early enough to decide to increase its speed to bypass the human's predicted

motion trajectory. When the robot has passed the human's motion trajectory its decreases its

speed to normal to continue its movement.

7.4 Comparative Results

To further evaluate the appropriateness of the proposed approach a set of comparative

experiments have been performed. With these experiments it is aimed to provide quantitative

measures of how well the proposed approach performs when it is applied in dynamic environ-

ments where the robot's movement is obstructed by humans.

The experiments were performed in the simulated environment of the FORTH main en-

trance hall. The robot was set to reach various goal points and each goal point was reached

in the environment in the case where it is static, i.e. there is no human movement, and in

the case where it is dynamic. In the case of operating in a dynamic environment, the same

experiment was performed by having from one up to five humans moving within the area the

robot has to reach. Furthermore, in the case of having four and five humans moving within the

environment, experiments were setup such as that all humans move in the area that the robot

7.4 : Comparative Results 119

Figure 7.8: Avoiding obstacles by decreasing the robot's speed.

120 Chapter 7 : Results

Figure 7.9: Avoiding obstacles by increasing the robot's speed.

7.4 : Comparative Results 121

approaches to reach the goal point in a static environment but they were also performed with

a setup where humans were moving within this area and within the area that the robot would

perform manoeuvres to avoid humans.

In Figure 7.10 an example is shown of the human motion areas that are defined for the

comparative experiments performed. In this figure a sample configuration for a start and a goal

point is shown along with a shaded area that denotes the area within the robot would choose

to move to reach the goal point in a static environment. Hence, in the performed experiments

humans are set up to move within this area so that the robot would have to employ obstacle

avoidance techniques. In the special case of the experiments where there are four or five humans

moving in the environment there have been used two setups. In one of them all humans move

within the area that the robot will operate and in the other setup humans move also outside

this area but still within the area where the goal point lies. The second setup enables us to

further evaluate the performance of the proposed approach since alternatives routes to a goal

point will be also obstructed by human motion.

In addition, the dynamic environment experiments were performed with and without the use

of the prediction module. The experiments were performed using 50 different configurations

of start and goal points of the robot. The type of experiments performed for each configuration

are summarized in Table 7.3.

The time required to execute the path obtained in the case where the environment is static

is taken as the optimal time required to perform each experiment. This time is utilized as a

reference time to compare against the time required to reach the goal point in all other types

of experiments. Thus, we assume that the desirable behavior of the proposed approach is to

be able to reach the goal point in a time that is as close as possible to the time the robot has

taken when it operated in a static environment. This measure provides us with an insight of

how efficiently and effectively the robot can avoid moving obstacles.

122 Chapter 7 : Results

Figure 7.10: An example of how the human motion areas are defined for the comparative

experiments performed.

In Table 7.4, the outcome of the performed experiments is presented. In this table, a number

that ranges from zero to one has been evaluated for each type of experiment, as defined in Table

7.3, that denotes how close the performance of the proposed approach was to the optimal one,

Table 7.3: Type of experiments performed for each configuration of start and goal point.

Experiment No. of humans Prediction Enabled Human Motion Areas

static 0 No −
dyn1a 1 Y es 1

dyn1b 1 No 1

dyn2a 2 Y es 1

dyn2b 2 No 1

dyn3a 3 Y es 1

dyn3b 3 No 1

dyn4a 4 Y es 1

dyn4b 4 No 1

dyn4c 4 Y es 2

dyn4d 4 No 2

dyn5a 5 Y es 1

dyn5b 5 No 1

dyn5c 5 Y es 2

dyn5d 5 No 2

7.4 : Comparative Results 123

i.e. when the robot performed the experiments in a static environment. Since all the experiments

were performed in a simulated environment the time taken to complete a motion path is actually

the number of time steps that have been executed. The overall performance for each type of

experiment has been evaluated as the average of the performance for each of the 50 distinct

configurations used, as:

Ci =
50∑

k=1

ci,k,

where Ci is the overall performance of each type of experiment i as shown in Table 7.4 and

ci is the performance of each type of experiment i when executing a specific configuration k,

that is evaluated as:

ci,k =
no. of time steps in static environment at configuration k

no. of time steps in experiment i at configuration k
.

As can be observed in Table 7.4, the proposed approached when utilized with motion pre-

diction of the human movement is superior to that when used without prediction. Furthermore,

as the number of humans increases the difference in performance of the proposed approach

with prediction and without prediction is more apparent. This is due to the fact that when

prediction is available the robot can decide to follow a completely different path that is free

instead of getting close to humans and making manoeuvres to avoid them, where as the num-

ber of humans increases it is more difficult to perform such manoeuvres. This becomes clear

when the performance of the proposed approach is observed in the case of the experiments

performed with four or five humans and the effect of having them moving in one or two areas.

When the proposed approach is utilized with prediction it can be seen that the performance is

not affected dramatically since the robot can decide early enough to follow a path that will not

get congested. On the other hand, when there is no prediction utilized the robot has to avoid

124 Chapter 7 : Results

many humans and in many cases it does not have the space to perform appropriate manoeuvres.

Consequently, the performance is greatly affected when all humans move within the same area

and there in no prediction utilized. The performance in the case of the experiments performed

without prediction and with humans moving within two areas is actually equivalent to that of

the experiments dyn2 and dyn3 since the robot does not change its path to the goal.

Finally, overall the performance of the proposed approach with prediction utilized remains

good as the number of humans increases and the deviation from the optimal time required

when operating in a static environment remains small. As a result, the proposed predictive

navigation approach has shown a stable performance even when the number of humans present

in the environment increases and is able to produce paths to reach a goal point that are not

too far in time measures of the corresponding paths that the robot would execute in a static

environment.

Table 7.4: Overall performance of the proposed approach for each type of experiment per-

formed.

Experiment No. of humans With Without Human Motion
Prediction Prediction Areas

dyn1 1 0.947 0.938 1

dyn2 2 0.922 0.873 1

dyn3 3 0.859 0.786 1

dyn4 4 0.795 0.691 1 or 2

dyn4 4 0.823 0.584 1

dyn4 4 0.767 0.798 2

dyn5 5 0.788 0.609 1 or 2

dyn5 5 0.818 0.590 1

dyn5 5 0.758 0.628 2

7.5 : Conclusions 125

7.5 Conclusions

The results of the proposed predictive navigation approach modelled with the RN-HPOMDP

have been presented in this chapter. These results have demonstrated the effectiveness of the

proposed approach for navigation in dynamic environments. Its performance has been shown

to remain stable when the number of humans and/or dynamic objects present in the environ-

ment increases. Furthermore, the predictive navigation approach provides four distinct obstacle

avoidance behaviors that are activated by the RN-HPOMDP as required based only on the robot

perception and the obtained future motion prediction for humans and/or other objects.

8

Conclusions

To conclude this thesis we will review the work presented, the main contributions of this thesis

and we will point out possible directions for future research.

8.1 Summary

In this thesis, we have proposed a new predictive approach to the autonomous robot nav-

igation problem. The proposed approach is based on a Partially Observed Markov Decision

Process (POMDP), that is the navigation problem is treated in a probabilistic manner. Further-

more, the POMDP model is utilized as a unified model for navigation that does not require any

other external module to perform the tasks of localization, planning and obstacle avoidance.

In this thesis the problem of navigating effectively in crowded environments was considered.

The desired robot behavior is to reach its goal points in an optimal manner in quantitative as

well as quality measures. Therefore, it is required to reach its goal points in the shortest time

possible as far as quantitative measures are concerned but also by following ``elegant'' and

128 Chapter 8 : Conclusions

``aware'' paths to satisfy the quality measures. The robot executes ``elegant'' and ``aware'' paths

when they are smooth and do not direct the robot to highly congested areas where it should

perform many manoeuvres but also when changes in the environment that might eventually

block its route to the goal point can be realized and hence avoided. This kind of behavior

is achieved by incorporating into the model future motion prediction. Two kinds of motion

prediction are utilized: short-term and long-term prediction. The long-term future motion

prediction is the element that allows to plan paths that are ``aware'' and hence ``elegant''. An

important aspect when planning is how much information is utilized, i.e. whether planning is

performed globally or locally. The proposed framework is capable of planning globally and

hence take into account all available environment information. Furthermore, global planning is

performed continuously and hence the robot can react quickly to changes in the environment.

Finally, the robot is allowed to modify its speed, increase it or decrease it, in order to avoid

obstacles more effectively.

All navigation tasks are performed with the use of a POMDP. POMDPs are probabilistic

sequential decision making models that have been used so far for high-level planning. In this

way, the probabilistic manner in which planning was performed was only partially exploited since

it is required to use non-probabilistic obstacle avoidance and/or low-level planning methods.

The main drawback of POMDPs when used for navigation is their extreme memory and com-

putational requirements. As a result, in this thesis a hierarchical representation of POMDPs

specifically designed for robot navigation, the RN-HPOMDP, has been developed that is capa-

ble of modelling the environment at a fine resolution and also being solved in real-time on-line.

Consequently, uncertainly is considered in all aspects of navigation.

Experimental results have shown the applicability and effectiveness of the proposed ap-

proach for indoor navigation tasks where optimal planning and effective obstacle avoidance are

required at the same time.

8.2 : Contributions 129

8.2 Contributions

The primary contributions of this thesis are the modelling of the autonomous robot navi-

gation task via HPOMDPs and the future motion prediction of humans and/or other moving

objects. Utilization of POMDPs towards the development of a unified probabilistic framework

for autonomous robot navigation gave rise to contributions, which are summarized below.

• RN-HPOMDP. A novel representation of hierarchical POMDPs is proposed in this thesis

specifically designed for the autonomous robot navigation problem. It has been shown

that the RN-HPOMDP can effectively model large real-world environments at a fine

resolution and it can decide the actions the robot should execute in real-time. The RN-

HPOMDP integrates all three aspects of navigation: localization, planning and obstacle

avoidance. Finally, it should be stressed out that the RN-HPOMDP performs these three

tasks and provides the actual actions the robot executes without the intervention of any

other module.

• Reference POMDP (rPOMDP). The RN-HPOMDP is modelled in such a manner such

that the functions that characterize it are based only on the motion model of the robot.

This feature has enabled us to introduce the notion of the Reference POMDP (rPOMDP)

that conveys this robot specific information. The rPOMDP is a very small POMDP in

size, independently of the actual size of the environment, that is used to maintain all

probability matrices of the RN-HPOMDP.

• Long-Term Prediction. A novel approach for long-term prediction of the motion trajec-

tory of humans and/or other objects is proposed in this thesis. The long-term prediction

is based on the definition of the so called ``hot points'', i.e. points of interest in the

environment that people tend to visit often. The ``hot points'' can be either defined

manually or be learned through an automated procedure that produces a map of ``hot

130 Chapter 8 : Conclusions

points''. The map of ``hot points'' in essence conveys information regarding the patterns

of motion behavior in a specific environment.

• Motion Tracking. A new methodology for multiple object motion tracking is also pre-

sented in this thesis. The motion tracker utilizes the short-term and long-term prediction

obtained for obstacle avoidance to perform the estimation step. The data association

step is performed by a nearest neighbor filter that is however verified by the motion tra-

jectory of detected objects obtained by the long-term prediction module. Furthermore,

where the nearest neighbor filter fails to match objects due to occlusions the long-term

prediction module is again utilized.

• Control of Robot Speed to Avoid Obstacles. The robot is allowed to increase or decrease

its speed in order to avoid obstacles more effectively. In this manner, unnecessary detours

can be avoided. The change of speed is decided by the POMDP used for navigation. The

notion of the projected state is introduced that allows the use of the regular POMDP

functions without the need of incorporating into the state space or the action space the

different speed at which the robot can move.

8.3 Future Work

Throughout this thesis, we have studied the application of POMDPs for the autonomous

robot navigation problem along with prediction methods for effective obstacle avoidance. The

proposed probabilistic framework consents encouragingly on the applicability of POMDPs for

modelling in a unified manner the three navigation tasks of localization, planning and obstacle

avoidance. The proposed hierarchical POMDP has been shown appropriate for providing

directly the actions the robot should perform without the intervention of any other module and

hence exploiting its probabilistic nature in all aspects of navigation. During our study we have

8.3 : Future Work 131

gained significant insight into the challenges as well as the opportunities related with such an

attempt. We believe that this thesis has contributed to research effort in this topic; still there

are interesting aspects that deserve further research endeavors. To conclude this thesis, we will

point out some areas appearing to invite productive future work.

• Reference POMDP (rPOMDP). The proposed rPOMDP has been utilized to model the

robot motion behavior in the POMDP functions. Hence, we were able to transfer the

probabilities learned for the rPOMDP to the whole hierarchical structure of POMDPs.

Environment specific information is included only in the reward function of the POMDP

and this has enabled us to plan with POMDPs in real-time for large environments.

However, the rPOMDP has limitations since it defines a small state space in which the

motion behavior is modelled. To alleviate this limitation it is proposed to investigate the

use of continuous functions that can be learned to model the robot motion behavior and

then use these reference function in analogy with the rPOMDP to transfer the required

probabilities on-line while planning. An important aspect of this approach is the way in

which the observation set of the POMDP is modelled. In our approach, observations do

not infer environment specific information as most commonly is the case with POMDPs

but instead infer information about the movement of the robot. However, the observation

set is limited on the accuracy of the output of the IDC algorithm for scan matching that

is used to form the observation set. It is proposed to further investigate the possible

approaches in forming the observation set independently of another approach but still

inferring the actual robot motion instead of environment information.

• Hierarchical POMDP (RN-HPOMDP). The proposed RN-HPOMDP has shown that

POMDPs can actually be utilized not only for high-level planning but low-level planning

with integrated obstacle avoidance behavior. However, the main deficiency of POMDPs

when used for planning in large real-world environments is that they have to maintain

132 Chapter 8 : Conclusions

a belief distribution of extremely large size. The use of the rPOMDP has provided a

method for maintaining the POMDP function and the hierarchical structure has provided

a manner of representing the environment at various discretizations and divided into

small areas. In essence, planning with the RN-HPOMDP, i.e. solving small POMDPs

at various discretizations, is analogous to planning with multiple high-level planners and

a low-level planner. Furthermore, when updating the robot's belief about the state it

actually occupies with the RN-HPOMDP is actually analogous to updating multiple small

regions of the belief and then these regions compose the full belief about the robot's state.

A future proposed improvement of the RN-HPOMDP is to built dynamic hierarchical

structures based on the current belief state of the robot. In this manner, the hierarchical

structure can choose the discretization of each area of the environment based on the

importance of its features. Hence, it will capture more effectively the important features

of the environment, e.g. the areas of the environment where the robot lies, the goal point

is located or where there is activity. Furthermore, the belief update is performed currently

in the RN-HPOMDP according to predefined divisions of the environment. With the

use of a dynamic hierarchical structure the division of the environment can be dependent

on the belief distribution and hence perform the belief update more effectively. This

approach can be thought as analogous to the recently proposed point-based POMDP

methods, that have gained a great interest in the research community. However, the

choice of the belief points in the proposed approach is not random and areas of the belief

are chosen instead of unique points. Finally, we should note that although the interest in

the research community is mainly focused on developing more efficient approximation

methods of POMDPs, it is believed that the use of a hierarchical structure is required to

be able to use POMDPs in the problem context of this thesis. This is due to the fact that

even the most recently proposed approximation methods cannot be solved in real-time

8.3 : Future Work 133

for millions of states, like the proposed hierarchical structure is able.

• Robot Speed Control. The modification of the robot's speed of execution has been

shown to provide an effective manner for obstacle avoidance. It is proposed to investigate

methods that can allow the robot to modify its speed as required to avoid obstacles instead

of being able to choose between predefined speeds. With the use of the continuous

functions proposed for future investigation this can be achieved without increasing the

computational complexity or memory requirements of the POMDP.

• Future Motion Prediction. Prediction about the movement of humans and/or obstacles

has enabled us to perform obstacle avoidance efficiently and effectively. This was mainly

achieved by the long-term prediction module that attempts to predict the final destination

point of a human's movement. As noted previously in this thesis, standard prediction

methods cannot provide good estimates of the future position of humans. Therefore,

learning the motion behavior of humans in a specific environment provides us the means

of obtaining long-term predictions. Another method that shares the same intuition is the

work presented in [9]. This method however learns specific motion patterns to destination

points in an environment. It is believed that learning the destination points humans tend

to visit often can be utilized more effectively for future motion prediction since it is not

restricted to conform to any specific motion pattern. This approach is proposed to be

further extended by learning areas of the environment that tend to get congested and

associate them with speed behaviors of humans.

• Multi-Robot Navigation. The predictive navigation framework proposed in this thesis is

proposed to be extended for multi-robot navigation. The coordination can be achieved

with the utilization of Markov games that can handle multiple robots represented as

agents modelled with the RN-HPOMDP.

134 Chapter 8 : Conclusions

A concluding remark is that autonomous robot navigation can benefit a lot by utilization

of POMDPs as confirmed by the increased interest in research on planning under uncertainty.

Furthermore, the prediction of human motion can assist in obtaining more effective paths to the

destination points a robot has to reach. In this thesis we have introduced a new approach towards

this goal and have demonstrated its applicability and effectiveness to demanding navigation

tasks. At the same time, the proposed approach provides a basis for future work, pointing to

topics that call for research studies.

References

[1] D. Aberdeen. A (revised) survey of approximate methods for solving Partially Observable Markov

Decision Processes. Technical report, National ICT Australia, Canberra Austalia, 2003.

[2] J.M. Ahuactzin, E.-G. Talbi, P. Bessiere, and E. Mazer. Using genetic algorithms for robot motion

planning. In Geometric Reasoning for Perception and Action, pages 84-93, 1991.

[3] K.O. Arras, N. Tomatis, and R. Siegwart. Multisensor on-the-fly localization using laser and vision.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS),

pages 131-143, 2000.

[4] N. Ayache and O. D. Faugeras. Maintaining representations of the environment of a mobile robot.

IEEE Transanctions on Robotics and Automation, 5:804-819, 1989.

[5] H. Baltzakis and P. Trahanias. A hybrid framework for mobile robot localization: Formulation

using switching state-space models. Autonomous Robots, 15(2):169-191, 2003.

[6] Y. Bar-Shalom, editor. Multitarget-Multisensor Tracking: Advanced Applications. Artech House,

1990.

[7] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic Press, 1988.

[8] M.A. Batalin, G.S. Shukhatme, and M. Hattig. Mobile robot navigation using a sensor network.

In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), 2003.

[9] M. Bennewitz, W. Burgard, and S. Thrun. Using EM to learn motion behaviors of persons with

mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots &

Systems (IROS), 2002.

136 References

[10] M. Bennewitz, W. Burgard, and G. Cielniak. Utilizing learned motion patterns to robustly track

persons. In Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Per-

formance Evaluation of Tracking and Surveillance (VS-PETS), 2003.

[11] M. Betke and L. Gurvits. Mobile robot localization using landmarks. IEEE Transanctions on

Robotics and Automation, 13:251�263, 1997.

[12] J. Borenstein and Y. Koren. The Vector Field Histogram - fast obstacle avoidance for mobile

robots. IEEE Journal of Robotics and Automation, 7(3):278-288, 1991.

[13] O. Brock and O. Khatib. High-speed navigation using the global dynamic window approach. In

Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), 1999.

[14] A. Bruce and G. Gordon. Better motion prediction for people-tracking. In Proceedings of the

IEEE International Conference on Robotics & Automation (ICRA), 2004.

[15] J. F. Canny and M. C. Lin. An opportunistic global path planner. Algorithmica, 10(2-4):102-120,

1993.

[16] Anthony R. Cassandra, Leslie Pack Kaelbling, and James A. Kurien. Acting under uncertainty:

Discrete bayesian models for mobile-robot navigation. In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, 1996.

[17] J.A. Castellanos, J.M. Martinez, J. Neira, and J.D. Tardos. Experiments in multisensor mobile

robot localization and map building. In Proceedinds of the IFAC Symposium on Intelligent Au-

tonomous Vehicles, pages 173-178, 1998.

[18] D. Castro, U. Nunes, and A. Ruano. Obstacle avoidance in local navigation. In Proceedings of the

10th Mediterranean Conference on Control and Automation (MED2002), 2002.

[19] C. C. Chang and K.-T. Song. Dynamic motion planning based on real-time obstacle prediction.

In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), volume 3,

pages 2402-2407, 1996.

[20] Charles C. Chang and Kai-Tai Song. Dynamic motion planning based on real-time obstacle

prediction. In Proceeding of the 1996 IEEE International Conference on Robotics and Automation,

pages 2402-2407, 1996.

References 137

[21] C.A. Colios and P.E. Trahanias. A framework for visual landmark identification based on projective

and point-permutation invariant vectors. Robotics and Autonomous Systems Journal, 35(1):37-51,

2001.

[22] C. I. Connolly. Harmonic functions and collision probabilities. In Proceedings of the IEEE Inter-

national Conference on Robotics & Automation (ICRA), pages 3015-3019, 1994.

[23] I. J. Cox. Blanche�an experiment in guidance and navigation of an autonomous robot vehicle.

IEEE Transanctions on Robotics and Automation, 7:193-204, 1991.

[24] I.J. Cox. A review of statistical data association techniques for motion correspodence. International

Journal of Computer Vision, 10(1):53-66, 1993.

[25] A. Curran and K. J. Kyriakopoulos. Sensor-based self-localization for wheeled mobile robots.

Journal of Robotic Systems, 12(3):163-176, 1995.

[26] B.R. Donald. A search algorithm for motion planning with six degrees of freedom. Artificial

Intelligence, 31(3):295-353, 1987.

[27] M. Drumheller. Mobile robot localization using sonar. IEEE Transanctions on Pattern Analysis

and Machine Intelligence (PAMI), 9:325�332, 1987.

[28] T. Duckett and U. Nehmzow. Mobile robot self-localisation using occupancy histograms and

a mixture of gaussian location hypotheses. Robotics and Autonomous Systems Journal, 34(2-3):

119-130, 2001.

[29] A. Elganar and K. Gupta. Motion prediction of moving objects based on autoregressive model.

IEEE Transactions on Systems, Man and Cybernetics Part A, 28(6):803-810, 1998.

[30] W. Feiten, R. Bauer, and G. Lawitzky. Robust obstacle avoidance in unknown and cramped

environments. In Proceedings of the IEEE International Conference on Robotics & Automation

(ICRA), pages 2412-2417, 1994.

[31] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity obstacles.

International Journal on Robotics Research, 17(7):711-727, 1998.

[32] A. Foka. Time series prediction using evolving polynomial neural networks. Master's thesis,

UMIST - University of Manchester Institute of Science and Technology, 1999.

138 References

[33] A. Foka and P. Trahanias. Predictive autonomous robot navigation. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots & Systems (IROS), 2002.

[34] A. Foka and P. Trahanias. Predictive control of robot velocity to avoid obstacles in dynamic

environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots &

Systems (IROS), 2003.

[35] A. Foka and P. Trahanias. Predictive autonomous robot navigation. Autonomous Robots, under

preparation for submission.

[36] A. Foka and P. Trahanias. Real-time hierarchical POMDPs for autonomous robot navigation.

Robotics and Autonomous Systems (RAS), in review.

[37] A. Foka and P. Trahanias. Real-time hierarchical POMDPs for autonomous robot navigation. In

IJCAI-05 Workshop: Reasoning with Uncertainty in Robotics (RUR-05), 2005.

[38] D. Fox, W. Burgard, and S. Thrun. A hybrid collision avoidance method for mobile robots. In

Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), 1998.

[39] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments.

Journal of Artificial Intelligence Research, 11:391-427, 1999.

[40] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to collision

avoidance. IEEE Robotics & Automation Magazine, 4(1):23-33, March 1997.

[41] O. Frank, J. Nieto, J. Guivant, and S. Scheding. Multiple target tracking using sequential monte

carlo methods and statistical data association. In Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots & Systems (IROS), 2003.

[42] Kikuo Fujimura. Time-minimum routes in time-dependent networks. IEEE Transactions on Ro-

botics and Automation, 11(3):343-351, 1995.

[43] P. C. Gaston and T. Lozano-Perez. Tactile recognition and localization using object models: The

case of polyhedra on a plane. IEEE Transanctions on Pattern Analysis and Machine Intelligence

(PAMI), 6:257�265, 1984.

[44] D. M. Gavrila. The visual analysis of human movement: a survey. Computer Vision and Image

Understanding, 37(1):82-98, 1999.

References 139

[45] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. S. Sukhatme, and M. J. Mataric. Most valuable

player: A robot device server for distributed control. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots & Systems (IROS), pages 1226-1231, 2001.

[46] W. E. L. Grimson and T. Lozano-Perez. Model-based recognition and localization from sparse

range or tactile data. International Journal of Robotics Research, 3:3-35, 1984.

[47] J. Guldner and V. I. Utkin. Tracking the gradient of artificial potential fields: sliding mode control

for mobile robots. International Journal of Control, 63(3):417-432, 1996.

[48] J.-S. Gutmann and D. Fox. An experimental comparison of localization methods continued. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS), 2002.

[49] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of localization

methods. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems

(IROS), pages 736-743, 1998.

[50] J.S. Gutmann. Markov-Kalman localization for mobile robots. In Proceedings of the International

Conference on Pattern Recognition (ICPR), 2002.

[51] M. Hauskrecht. Value function approximations for Partially Observable Markov Decision

Processes. Journal of Artificial Intelligence Research, 13:33-95, 2000.

[52] Milos Hauskrecht. Planning and Control in Stochastic Domains with Imperfect Information. PhD

thesis, MIT, 1997.

[53] J. Hertzberg and F. Kirchner. Landmark-based autonomous navigation in sewerage pipes. In

Proceedings of the European Workshop on Advanced Mobile Robots, pages 68-73, 1996.

[54] C.S. Hong, S.M. Chun, J.S. Lee, and K.S. Hong. A vision-guided object tracking and prediction

algorithm for soccer robots. In Proceedings of the 1997 IEEE International Conference on Robotics

and Automation, pages 346-351, 1997.

[55] J. Horn and G. Schmidt. Continuous localization of a mobile robot based on 3d-laser-range-data,

predicted sensor images, and dead-reckoning. Robotics and Autonomous Systems, 14:99-118, 1995.

[56] C. Hue, J.-P. Cadre, and P. Perez. Sequential monte carlo methods for multiple target tracking

and data fusion. IEEE Transactions on Signal Processing, 50(2):309-325, 2002.

140 References

[57] R. A. Jarvis. On distance transform based collision free path planning for robot navigation in

known, unknown and time-varying environments. Advanced Mobile Robots, pages 3-31, 1994.

[58] B. Jung and G. S. Sukhatme. Tracking targets using multiple robots: The effect of environment

occlusion. Autonomous Robots, 13(3):191-205, 2002.

[59] Leslie Pack Kaebling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134, 1998.

[60] I. Kamon and E. Rivlin. Sensor based motion planning with global proofs. IEEE Transactions on

Robotics and Automation, 13(6):814-822, 1997.

[61] N. Kehtarnavaz and S. Li. A collision-free navigation scheme in the presence of moving obstacles.

In CVPR'88 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Ann

Arbor, MI, June 5-9, 1988), pages 808-813, Washington, DC., June 1988. Computer Society Press.

[62] Z. Khan, T. Balch, and F. Dellaert. Efficient particle filter-based tracking of multiple interacting

targets using an mrf-based motion model. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots & Systems (IROS), 2003.

[63] O. Khatib. Real-time obstacle avoidance for robot manipulator and mobile robots. International

Journal of Robotics Research, 5(1):90-98, 1986.

[64] Sven Koenig and Reid G. Simmons. Unsupervised learning of probabilistic models for robot

navigation. In Proceedings of the International Conference on Robotics and Automation, pages

2301-2308, 1996.

[65] K. M. Krishna and P. K. Kalra. Detecting tracking and avoidance of multiple dynamic objects.

Journal of Intelligent Robotic Systems, 33:371-408, 2002.

[66] E. Kruse, R. Gutsche, and F. M. Wahl. Acquisition of statistical motion patterns in dynamic envi-

ronments and their application to mobile robot motion planning. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots & Systems (IROS), volume 2, pages 712-717, 1997.

[67] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[68] A. Lazanas and J.C. Latombe. Landmark-based robot navigation. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), page 816�822, 1992.

References 141

[69] J. J. Leonard and H. F. Durrant-Whyte. Mobile robot localization by tracking geometric beacons.

IEEE Transanctions on Robotics and Automation, 7:376-382, 1991.

[70] M. Lindstrom and J.-O. Eklundh. Detecting and tracking moving objects from a mobile platform

using a laser range scanner. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots & Systems (IROS), 2001.

[71] Michael L. Littman. Algorithms for Sequential Decision Making. PhD thesis, Department of Com-

puter Science, Brown University, 1996.

[72] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity of

probabilistic planning. Journal of Artificial Intelligence Research, 9:1-36, 1998.

[73] K. Low, W. Leow, and M. Jr. A hybrid mobile robot architecture with integrated planning and con-

trol. In Proceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS-02) , 2002.

[74] K. H. Low, W. K. Leow, and M. H. Ang Jr. Enhancing the reactive capabilities of integrated

planning and control with cooperative extended Kohonen maps. In Proceedings of the IEEE

International Conference on Robotics & Automation (ICRA), 2003.

[75] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d range scans.

Journal of Intelligent and Robotic Systems, 18:249-275, 1998.

[76] V.J. Lumelsky. Incorporating range sensing in the robot navigation function. IEEE Transactions

on Systems, Man and Cybernetics, 20(5):1058-1069, 1990.

[77] R. C. Luo and T. M. Chen. Target tracking by grey prediction theory and look-ahead fuzzy logic

control. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA),

volume 2, pages 1176-1181, 1999.

[78] R. Madhavan and C. Schlenoff. Moving object prediction for off-road autonomous navigation. In

Proceedings of the SPIE Aerosense Conference, 2003.

[79] E. Mazer, J. Ahuactzin, G. Talbi, and P. Bessiere. The ariadne's clew algorithm. Journal of Artificial

Intelligence Research (JAIR), 9:295-316, 1998.

142 References

[80] Jun Miura, Hiroshi Uozumi, and Yoshiaki Shirai. Mobile robot motion planning considering the

motion uncertainty of moving obstacles. In IEEE SMC '99 Conference Proceedings in Systems, Man

and Cybernetics, pages 692-697, 1999.

[81] M. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle filters for simultaneous mobile

robot localization and people-tracking. In Proceedings of the IEEE International Conference on

Robotics & Automation (ICRA), 2002.

[82] Yun Seok Nam, Bum Hee Lee, and Moon Sang Kim. View-time based moving obstacle avoidance

using stochastic prediction of obstacle motion. In Proceedings of the 1996 IEEE International

Conference on Robotics and Automation, pages 1081-1086, 1996.

[83] Daniel Nikovski and Illah Nourbakhsh. Learning probabilistic models for decision-theoretic nav-

igation of mobile robots. In Proc. 17th International Conf. on Machine Learning, pages 671-678.

Morgan Kaufmann, San Francisco, CA, 2000.

[84] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish an office-navigating robot. AI Magazine, 16

(2):53-60, 1995.

[85] Spence Oliver, Mahesh Saptharishi, John Dolan, Ashitey Trebi-Ollennu, and Pradeep Khosla.

Multi-robot path planning by predicting structure in a dynamic environment. In Proceedings of the

First IFAC Conference on Mechatronic Systems, volume II, pages 593-598, September 2000.

[86] J. Gomez Ortega and E. F. Camacho. Mobile robot navigation in a partially structured static

environment, using neural predictive control. Control Engineering Practice, 4(12):1669-1679, 1996.

[87] L. E. Parker. Cooperative robotics for multi-target observation. Intelligent Automation and Soft

Computing, special issue on Robotics Research at Oak Ridge National Laboratory, 5(1):5-19, 1999.

[88] V. Perdereau, C. Passi, and M. Drouin. Real-time control of redundant robotic manipulators for

mobile obstacle avoidance. Robotics and Autonomous Systems, 41:41-59, 2002.

[89] J. Pineau and S. Thrun. An integrated approach to hierarchy and abstraction for POMDPs.

Technical Report CMU-RI-TR-02-21, Carnegie Mellon University, 2002.

[90] J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to POMDP planning and execution.

Workshop on Hierarchy and Memory in Reinforcement Learning (ICML), 2001.

References 143

[91] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for

POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), 2003.

[92] K.-M. Poon. A fast heuristic algorithm for decision-theoretic planning. Master's thesis, The

Hong-Kong University of Science and Technology, 2001.

[93] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Neural Information

Systems (NIPS), 2003.

[94] M. L. Puterman. Markov Decision Processes - Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., 1994.

[95] D. Read. An algorithm for tracking multiple targets. IEEE Transactions on Automation and

Control, 24(6):84-90, 1979.

[96] Ioannis M. Rekleitis, Gregory Dudek, and Evangelos E. Milios. On multiagent exploration. In

Proceedings of Vision Interface, pages 455-461, 1998.

[97] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential functions. IEEE

Transactions on Robotics and Automation, 8(5):501-518, 1992.

[98] M. Rosencrantz, G. Gordon, and S. Thrun. Locating moving entities in indoor environments with

teams of mobile robots. In Proceedings of the International Joint Conference on Autonomous Agents

& Multi Agent Systems (AAMAS), 2003.

[99] N. Roy. Finding approximate POMDP solutions through belief compression. PhD thesis, Robotics

Institute, Carnegie Mellon, 2003.

[100] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation: Robot navigation under uncertainty

in dynamic environments. In Proceedings of the IEEE International Conference on Robotics &

Automation (ICRA), 1999.

[101] N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief com-

pression. Journal of Artificial Intelligence Research, 23:1-40, 2004.

[102] A. Saffiotti. The uses of fuzzy logic in autonomous robotics: a catalogue raisonne. Soft Computing,

1(4):180-197, 1997.

144 References

[103] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers. Tracking multiple moving targets with a mobile

robot using particle filters and statistical data association. In Proceedings of the IEEE International

Conference on Robotics & Automation (ICRA), 2001.

[104] D. Schulz, W. Burgard, D. Fox, and A. B. Cremens. People tracking with mobile robots using

sample-based joint probabilistic data association filters. International Journal of Robotics Research

(IJRR), 22(2):99-116, 2003.

[105] L. Shmoulian and E. Rimon. a∗-dfs: an algorithm for minimizing search effort in sensor-based

mobile robot navigation. In Proceedings of the IEEE International Conference on Robotics & Au-

tomation (ICRA), 1998.

[106] R. Simmons. The curvature-velocity method for local obstacle avoidance. In Proceedings of the

IEEE International Conference on Robotics & Automation (ICRA), pages 1080-1087, 1996.

[107] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O'Sullivan. Xavier: An autonomous

mobile robot on the web. Robotics and Automation Magazine, 1999.

[108] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially observable environ-

ments. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages

1080-1087, 1995.

[109] K. T. Simsarian, T. J. Olson, and N. Nandhakumar. View-invariant regions and mobile robot

self-localization. IEEE Transanctions on Robotics and Automation, 12:810-816, 1996.

[110] M.T.J. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning. In Proceedings

of the IEEE International Conference on Robotics & Automation (ICRA), 2004.

[111] C. Stachniss and W. Burgard. An integrated approach to goal-directed obstacle avoidance un-

der dynamic constraints for dynamic environments. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots & Systems (IROS), 2002.

[112] A. Stentz. The focused d∗ algorithm for real-time replanning. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), 1995.

[113] K. Sugihara. Some location problems for robot navigation using a single camera. Computer Vision,

Graphics and Image Processing, 42:112�129, 1988.

References 145

[114] R.S. Sutton. Planning by incremental dynamic programming. In Proceedings of the Eighth Interna-

tional Workshop on Machine Learning, pages 353-357. Morgan Kaufmann, 1991.

[115] S. Tadokoro, Y. Ishikawa, T. Takebe, and T. Takamori. Stochastic prediction of human motion

and control of robots in the service of human. In Proceedings of the 1993 IEEE International

Conference on Systems, Man and Cybernetics, volume 1, pages 503-508, 1993.

[116] Satoshi Tadokoro, Masaki Hayashi, and Yasushiro Manabe. On motion planning of mobile robots

which coexist and cooperate with human. In Proceedings of the 1995 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 518-523, 1995.

[117] R. Talluri and J. K. Aggarwal. Mobile robot self-location using modelimage feature correspon-

dence. IEEE Transanctions on Robotics and Automation, 12:63-77, 1996.

[118] K. Tanaka. Detecting collision-free paths by observing walking people. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS), volume 1, pages 55-60,

2002.

[119] G. Theocharous. Hierarchical Learning and Planning in Partially Observable Markov Decision

Processes. PhD thesis, Michigan State University, 2002.

[120] S. Thiebaux and P. Lamb. Combining Kalman filtering and Markov localization in network-like

environments. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence,

page 756�766, 2000.

[121] S. Thrun. Bayesian landmark learning for mobile robot localization. Machine Learning, 33(1):

41-76, 1998.

[122] S. Thrun, A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Hennig, T. Hofmann, M. Krell,

and T. Schmidt. Map learning and high-speed navigation in rhino. Technical Report IAI-TR-96-3,

University of Bonn, Department of Computer Science, 1996.

[123] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Henning, T. Hofmann, M. Krell,

and T. Schmidt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R.P.

Bonasso, and R Murphy, editors, AI-based Mobile Robots: Case Studies of Successful Robot Systems.

MIT Press, 1998.

146 References

[124] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hahnel,

C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algorithms and the interactive

musuem tour-guide robot minerva. International Journal of Robotics Research, 19(11):972-999,

2000.

[125] Sebastian Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93-109, 2000.

[126] N. Tomatis, I. Nourbakhsh, K. Arras, and R. Siegwart. A hybrid approach for robust and pre-

cise mobile robot navigation with compact environment modeling. In Proceedings of the IEEE

International Conference on Robotics & Automation (ICRA), 2001.

[127] P.E. Trahanias, S. Velissaris, and S.C. Orphanoudakis. Visual recognition of workspace landmarks

for topological navigation. Autonomous Robots, 7(2):143-158, 1999.

[128] S.G. Tzafestas, M.P. Tzamtzi, and G.G. Rigatos. Robust motion planning and control of mobile

robots for collision avoidance in terrains with moving objects. Mathematics and Computers in

Simulation, 59:279-292, 2002.

[129] I. Ulrich and J. Borenstein. VFH*: Local obstacle avoidance with look-ahead verification. In

Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pages 2505-

2511, April 2000.

[130] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile robots. In

Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), pages 1572-

1577, May 1998.

[131] J. Vanualailai, S. Nakagiri, and J.-H. Ha. Collision avoidance in a two-point system via liapunov's

second method. Mathematics and Computers in Simulation, 39:125-141, 1995.

[132] D. Vasquez and T. Fraichard. Motion prediction for moving objects: a statistical approach. In

Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), 2004.

[133] J. Vermaak, S. J. Godsill, and P. Perez. Monte carlo filtering for multi-target tracking and data

association. IEEE Transactions on Aerospace and Electronic Systems,41 (1):309-332, 2005.

[134] L. Wang and W. Tsai. Collision avoidance by a modified least-mean-square-error classification

scheme for indoor autonomous land vehicle navigation. Journal of Robotics Systems, 8:677-698,

1991.

References 147

[135] B. B. Werger and M. J. Mataric. Broadcast of local eligibility for multi-target observation. In

Proceedings of Distributed Autonomous Robotic Systems, pages 347-356, 2000.

[136] H. Yu and T. Su. Destination driven motion planning via obstacle motion prediction and multi-

state path repair. Journal of Intelligent and Robotics Systems, 36:149-173, 2003.

[137] J.S. Yu and P.C. Mtiller. An on-line cartesian space obstacle avoidance scheme for robot arms.

Mathematics and Computers in Simulation, 41:627-637, 1996.

[138] N. H. C. Yung and C. Ye. Avoidance of moving obstacles through behavior fusion and motion

prediction. In IEEE International Conference on Systems, Man and Cybernetics, pages 3424-3429,

1998.

[139] M. Zefran, J. Desai, and V. Kumar. Continuous motion plans for robotic systems with changing

dynamics behavior. In 2nd International Workshop on Algorithmic Foundations of Robotics, 1996.

[140] J. S. Zelek. Dynamic path planning. In IEEE Conference on Systems, Man and Cybernetics, 1995.

[141] Z. Zhang and O. Faugeras. A 3d world model builder with a mobile robot. International Journal

of Robotics Research, 11(4):269-285, 1992.

[142] Q. Zhu. Hidden Markov Model for dynamic obstacle avoidance of mobile robot navigation. IEEE

Transactions on Robotics and Automation, 7(3):390-397, June 1991.

